In a convex grid drawing of a plane graph, all edges are drawn as straight-line segments without any edge-intersection, all vertices are put on grid points and all facial cycles are drawn as convex polygons. A plane graph G has a convex drawing if and only if G is internally triconnected, and an internally triconnected plane graph G has a convex grid drawing on an (n-1)×(n-1) grid if either G is triconnected or the triconnected component decomposition tree T(G) of G has two or three leaves, where n is the number of vertices in G. An internally triconnected plane graph G has a convex grid drawing on a 2n×2n grid if T(G) has exactly four leaves. Furthermore, an internally triconnected plane graph G has a convex grid drawing on a 6n×n2 grid if T(G) has exactly five leaves. In this paper, we show that an internally triconnected plane graph G has a convex grid drawing on a 20n×16n grid if T(G) has exactly five leaves. We also present an algorithm to find such a drawing in linear time. This is the first algorithm that finds a convex grid drawing of such a plane graph G in a grid of O(n2) size.
Kei SATO
Fukushima University
Kazuyuki MIURA
Fukushima University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Kei SATO, Kazuyuki MIURA, "Convex Grid Drawings of Plane Graphs with Pentagonal Contours on O(n2) Grids" in IEICE TRANSACTIONS on Fundamentals,
vol. E104-A, no. 9, pp. 1142-1149, September 2021, doi: 10.1587/transfun.2020DMP0011.
Abstract: In a convex grid drawing of a plane graph, all edges are drawn as straight-line segments without any edge-intersection, all vertices are put on grid points and all facial cycles are drawn as convex polygons. A plane graph G has a convex drawing if and only if G is internally triconnected, and an internally triconnected plane graph G has a convex grid drawing on an (n-1)×(n-1) grid if either G is triconnected or the triconnected component decomposition tree T(G) of G has two or three leaves, where n is the number of vertices in G. An internally triconnected plane graph G has a convex grid drawing on a 2n×2n grid if T(G) has exactly four leaves. Furthermore, an internally triconnected plane graph G has a convex grid drawing on a 6n×n2 grid if T(G) has exactly five leaves. In this paper, we show that an internally triconnected plane graph G has a convex grid drawing on a 20n×16n grid if T(G) has exactly five leaves. We also present an algorithm to find such a drawing in linear time. This is the first algorithm that finds a convex grid drawing of such a plane graph G in a grid of O(n2) size.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2020DMP0011/_p
Copy
@ARTICLE{e104-a_9_1142,
author={Kei SATO, Kazuyuki MIURA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Convex Grid Drawings of Plane Graphs with Pentagonal Contours on O(n2) Grids},
year={2021},
volume={E104-A},
number={9},
pages={1142-1149},
abstract={In a convex grid drawing of a plane graph, all edges are drawn as straight-line segments without any edge-intersection, all vertices are put on grid points and all facial cycles are drawn as convex polygons. A plane graph G has a convex drawing if and only if G is internally triconnected, and an internally triconnected plane graph G has a convex grid drawing on an (n-1)×(n-1) grid if either G is triconnected or the triconnected component decomposition tree T(G) of G has two or three leaves, where n is the number of vertices in G. An internally triconnected plane graph G has a convex grid drawing on a 2n×2n grid if T(G) has exactly four leaves. Furthermore, an internally triconnected plane graph G has a convex grid drawing on a 6n×n2 grid if T(G) has exactly five leaves. In this paper, we show that an internally triconnected plane graph G has a convex grid drawing on a 20n×16n grid if T(G) has exactly five leaves. We also present an algorithm to find such a drawing in linear time. This is the first algorithm that finds a convex grid drawing of such a plane graph G in a grid of O(n2) size.},
keywords={},
doi={10.1587/transfun.2020DMP0011},
ISSN={1745-1337},
month={September},}
Copy
TY - JOUR
TI - Convex Grid Drawings of Plane Graphs with Pentagonal Contours on O(n2) Grids
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1142
EP - 1149
AU - Kei SATO
AU - Kazuyuki MIURA
PY - 2021
DO - 10.1587/transfun.2020DMP0011
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E104-A
IS - 9
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - September 2021
AB - In a convex grid drawing of a plane graph, all edges are drawn as straight-line segments without any edge-intersection, all vertices are put on grid points and all facial cycles are drawn as convex polygons. A plane graph G has a convex drawing if and only if G is internally triconnected, and an internally triconnected plane graph G has a convex grid drawing on an (n-1)×(n-1) grid if either G is triconnected or the triconnected component decomposition tree T(G) of G has two or three leaves, where n is the number of vertices in G. An internally triconnected plane graph G has a convex grid drawing on a 2n×2n grid if T(G) has exactly four leaves. Furthermore, an internally triconnected plane graph G has a convex grid drawing on a 6n×n2 grid if T(G) has exactly five leaves. In this paper, we show that an internally triconnected plane graph G has a convex grid drawing on a 20n×16n grid if T(G) has exactly five leaves. We also present an algorithm to find such a drawing in linear time. This is the first algorithm that finds a convex grid drawing of such a plane graph G in a grid of O(n2) size.
ER -