Full Text Views
118
This work proposes a design methodology that saves the power dissipation under voltage over-scaling (VOS) operation. The key idea of the proposed design methodology is to combine critical path isolation (CPI) and bit-width scaling (BWS) under the constraint of computational quality, e.g., Peak Signal-to-Noise Ratio (PSNR) in the image processing domain. Conventional CPI inherently cannot reduce the delay of intrinsic critical paths (CPs), which may significantly restrict the power saving effect. On the other hand, the proposed methodology tries to reduce both intrinsic and non-intrinsic CPs. Therefore, our design dramatically reduces the supply voltage and power dissipation while satisfying the quality constraint. Moreover, for reducing co-design exploration space, the proposed methodology utilizes the exclusiveness of the paths targeted by CPI and BWS, where CPI aims at reducing the minimum supply voltage of non-intrinsic CP, and BWS focuses on intrinsic CPs in arithmetic units. From this key exclusiveness, the proposed design splits the simultaneous optimization problem into three sub-problems; (1) the determination of bit-width reduction, (2) the timing optimization for non-intrinsic CPs, and (3) investigating the minimum supply voltage of the BWS and CPI-applied circuit under quality constraint, for reducing power dissipation. Thanks to the problem splitting, the proposed methodology can efficiently find quality-constrained minimum-power design. Evaluation results show that CPI and BWS are highly compatible, and they significantly enhance the efficacy of VOS. In a case study of a GPGPU processor, the proposed design saves the power dissipation by 42.7% with an image processing workload and by 51.2% with a neural network inference workload.
Yutaka MASUDA
Nagoya University
Jun NAGAYAMA
the Socionext Inc.
TaiYu CHENG
Osaka University
Tohru ISHIHARA
Nagoya University
Yoichi MOMIYAMA
the Socionext Inc.
Masanori HASHIMOTO
Osaka University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yutaka MASUDA, Jun NAGAYAMA, TaiYu CHENG, Tohru ISHIHARA, Yoichi MOMIYAMA, Masanori HASHIMOTO, "Low-Power Design Methodology of Voltage Over-Scalable Circuit with Critical Path Isolation and Bit-Width Scaling" in IEICE TRANSACTIONS on Fundamentals,
vol. E105-A, no. 3, pp. 509-517, March 2022, doi: 10.1587/transfun.2021VLP0002.
Abstract: This work proposes a design methodology that saves the power dissipation under voltage over-scaling (VOS) operation. The key idea of the proposed design methodology is to combine critical path isolation (CPI) and bit-width scaling (BWS) under the constraint of computational quality, e.g., Peak Signal-to-Noise Ratio (PSNR) in the image processing domain. Conventional CPI inherently cannot reduce the delay of intrinsic critical paths (CPs), which may significantly restrict the power saving effect. On the other hand, the proposed methodology tries to reduce both intrinsic and non-intrinsic CPs. Therefore, our design dramatically reduces the supply voltage and power dissipation while satisfying the quality constraint. Moreover, for reducing co-design exploration space, the proposed methodology utilizes the exclusiveness of the paths targeted by CPI and BWS, where CPI aims at reducing the minimum supply voltage of non-intrinsic CP, and BWS focuses on intrinsic CPs in arithmetic units. From this key exclusiveness, the proposed design splits the simultaneous optimization problem into three sub-problems; (1) the determination of bit-width reduction, (2) the timing optimization for non-intrinsic CPs, and (3) investigating the minimum supply voltage of the BWS and CPI-applied circuit under quality constraint, for reducing power dissipation. Thanks to the problem splitting, the proposed methodology can efficiently find quality-constrained minimum-power design. Evaluation results show that CPI and BWS are highly compatible, and they significantly enhance the efficacy of VOS. In a case study of a GPGPU processor, the proposed design saves the power dissipation by 42.7% with an image processing workload and by 51.2% with a neural network inference workload.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2021VLP0002/_p
Copy
@ARTICLE{e105-a_3_509,
author={Yutaka MASUDA, Jun NAGAYAMA, TaiYu CHENG, Tohru ISHIHARA, Yoichi MOMIYAMA, Masanori HASHIMOTO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Low-Power Design Methodology of Voltage Over-Scalable Circuit with Critical Path Isolation and Bit-Width Scaling},
year={2022},
volume={E105-A},
number={3},
pages={509-517},
abstract={This work proposes a design methodology that saves the power dissipation under voltage over-scaling (VOS) operation. The key idea of the proposed design methodology is to combine critical path isolation (CPI) and bit-width scaling (BWS) under the constraint of computational quality, e.g., Peak Signal-to-Noise Ratio (PSNR) in the image processing domain. Conventional CPI inherently cannot reduce the delay of intrinsic critical paths (CPs), which may significantly restrict the power saving effect. On the other hand, the proposed methodology tries to reduce both intrinsic and non-intrinsic CPs. Therefore, our design dramatically reduces the supply voltage and power dissipation while satisfying the quality constraint. Moreover, for reducing co-design exploration space, the proposed methodology utilizes the exclusiveness of the paths targeted by CPI and BWS, where CPI aims at reducing the minimum supply voltage of non-intrinsic CP, and BWS focuses on intrinsic CPs in arithmetic units. From this key exclusiveness, the proposed design splits the simultaneous optimization problem into three sub-problems; (1) the determination of bit-width reduction, (2) the timing optimization for non-intrinsic CPs, and (3) investigating the minimum supply voltage of the BWS and CPI-applied circuit under quality constraint, for reducing power dissipation. Thanks to the problem splitting, the proposed methodology can efficiently find quality-constrained minimum-power design. Evaluation results show that CPI and BWS are highly compatible, and they significantly enhance the efficacy of VOS. In a case study of a GPGPU processor, the proposed design saves the power dissipation by 42.7% with an image processing workload and by 51.2% with a neural network inference workload.},
keywords={},
doi={10.1587/transfun.2021VLP0002},
ISSN={1745-1337},
month={March},}
Copy
TY - JOUR
TI - Low-Power Design Methodology of Voltage Over-Scalable Circuit with Critical Path Isolation and Bit-Width Scaling
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 509
EP - 517
AU - Yutaka MASUDA
AU - Jun NAGAYAMA
AU - TaiYu CHENG
AU - Tohru ISHIHARA
AU - Yoichi MOMIYAMA
AU - Masanori HASHIMOTO
PY - 2022
DO - 10.1587/transfun.2021VLP0002
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E105-A
IS - 3
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - March 2022
AB - This work proposes a design methodology that saves the power dissipation under voltage over-scaling (VOS) operation. The key idea of the proposed design methodology is to combine critical path isolation (CPI) and bit-width scaling (BWS) under the constraint of computational quality, e.g., Peak Signal-to-Noise Ratio (PSNR) in the image processing domain. Conventional CPI inherently cannot reduce the delay of intrinsic critical paths (CPs), which may significantly restrict the power saving effect. On the other hand, the proposed methodology tries to reduce both intrinsic and non-intrinsic CPs. Therefore, our design dramatically reduces the supply voltage and power dissipation while satisfying the quality constraint. Moreover, for reducing co-design exploration space, the proposed methodology utilizes the exclusiveness of the paths targeted by CPI and BWS, where CPI aims at reducing the minimum supply voltage of non-intrinsic CP, and BWS focuses on intrinsic CPs in arithmetic units. From this key exclusiveness, the proposed design splits the simultaneous optimization problem into three sub-problems; (1) the determination of bit-width reduction, (2) the timing optimization for non-intrinsic CPs, and (3) investigating the minimum supply voltage of the BWS and CPI-applied circuit under quality constraint, for reducing power dissipation. Thanks to the problem splitting, the proposed methodology can efficiently find quality-constrained minimum-power design. Evaluation results show that CPI and BWS are highly compatible, and they significantly enhance the efficacy of VOS. In a case study of a GPGPU processor, the proposed design saves the power dissipation by 42.7% with an image processing workload and by 51.2% with a neural network inference workload.
ER -