Homomorphic encryption (HE) is public key encryption that enables computation over ciphertexts without decrypting them. To overcome an issue that HE cannot achieve IND-CCA2 security, the notion of keyed-homomorphic encryption (KH-PKE) was introduced (Emura et al., PKC 2013), which has a separate homomorphic evaluation key and can achieve stronger security named KH-CCA security. The contributions of this paper are twofold. First, recall that the syntax of KH-PKE assumes that homomorphic evaluation is performed for single operations, and KH-CCA security was formulated based on this syntax. Consequently, if the homomorphic evaluation algorithm is enhanced in a way of gathering up sequential operations as a single evaluation, then it is not obvious whether or not KH-CCA security is preserved. In this paper, we show that KH-CCA security is in general not preserved under such modification, while KH-CCA security is preserved when the original scheme additionally satisfies circuit privacy. Secondly, Catalano and Fiore (ACM CCS 2015) proposed a conversion method from linearly HE schemes into two-level HE schemes, the latter admitting addition and a single multiplication for ciphertexts. In this paper, we extend the conversion to the case of linearly KH-PKE schemes to obtain two-level KH-PKE schemes. Moreover, based on the generalized version of Catalano-Fiore conversion, we also construct a similar conversion from d-level KH-PKE schemes into 2d-level KH-PKE schemes.
Hirotomo SHINOKI
Hitachi, Ltd.
Koji NUIDA
Kyushu University,National Institute of Advanced Industrial Science and Technology (AIST)
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Hirotomo SHINOKI, Koji NUIDA, "On Extension of Evaluation Algorithms in Keyed-Homomorphic Encryption" in IEICE TRANSACTIONS on Fundamentals,
vol. E107-A, no. 3, pp. 218-233, March 2024, doi: 10.1587/transfun.2023CIP0007.
Abstract: Homomorphic encryption (HE) is public key encryption that enables computation over ciphertexts without decrypting them. To overcome an issue that HE cannot achieve IND-CCA2 security, the notion of keyed-homomorphic encryption (KH-PKE) was introduced (Emura et al., PKC 2013), which has a separate homomorphic evaluation key and can achieve stronger security named KH-CCA security. The contributions of this paper are twofold. First, recall that the syntax of KH-PKE assumes that homomorphic evaluation is performed for single operations, and KH-CCA security was formulated based on this syntax. Consequently, if the homomorphic evaluation algorithm is enhanced in a way of gathering up sequential operations as a single evaluation, then it is not obvious whether or not KH-CCA security is preserved. In this paper, we show that KH-CCA security is in general not preserved under such modification, while KH-CCA security is preserved when the original scheme additionally satisfies circuit privacy. Secondly, Catalano and Fiore (ACM CCS 2015) proposed a conversion method from linearly HE schemes into two-level HE schemes, the latter admitting addition and a single multiplication for ciphertexts. In this paper, we extend the conversion to the case of linearly KH-PKE schemes to obtain two-level KH-PKE schemes. Moreover, based on the generalized version of Catalano-Fiore conversion, we also construct a similar conversion from d-level KH-PKE schemes into 2d-level KH-PKE schemes.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.2023CIP0007/_p
Copy
@ARTICLE{e107-a_3_218,
author={Hirotomo SHINOKI, Koji NUIDA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={On Extension of Evaluation Algorithms in Keyed-Homomorphic Encryption},
year={2024},
volume={E107-A},
number={3},
pages={218-233},
abstract={Homomorphic encryption (HE) is public key encryption that enables computation over ciphertexts without decrypting them. To overcome an issue that HE cannot achieve IND-CCA2 security, the notion of keyed-homomorphic encryption (KH-PKE) was introduced (Emura et al., PKC 2013), which has a separate homomorphic evaluation key and can achieve stronger security named KH-CCA security. The contributions of this paper are twofold. First, recall that the syntax of KH-PKE assumes that homomorphic evaluation is performed for single operations, and KH-CCA security was formulated based on this syntax. Consequently, if the homomorphic evaluation algorithm is enhanced in a way of gathering up sequential operations as a single evaluation, then it is not obvious whether or not KH-CCA security is preserved. In this paper, we show that KH-CCA security is in general not preserved under such modification, while KH-CCA security is preserved when the original scheme additionally satisfies circuit privacy. Secondly, Catalano and Fiore (ACM CCS 2015) proposed a conversion method from linearly HE schemes into two-level HE schemes, the latter admitting addition and a single multiplication for ciphertexts. In this paper, we extend the conversion to the case of linearly KH-PKE schemes to obtain two-level KH-PKE schemes. Moreover, based on the generalized version of Catalano-Fiore conversion, we also construct a similar conversion from d-level KH-PKE schemes into 2d-level KH-PKE schemes.},
keywords={},
doi={10.1587/transfun.2023CIP0007},
ISSN={1745-1337},
month={March},}
Copy
TY - JOUR
TI - On Extension of Evaluation Algorithms in Keyed-Homomorphic Encryption
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 218
EP - 233
AU - Hirotomo SHINOKI
AU - Koji NUIDA
PY - 2024
DO - 10.1587/transfun.2023CIP0007
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E107-A
IS - 3
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - March 2024
AB - Homomorphic encryption (HE) is public key encryption that enables computation over ciphertexts without decrypting them. To overcome an issue that HE cannot achieve IND-CCA2 security, the notion of keyed-homomorphic encryption (KH-PKE) was introduced (Emura et al., PKC 2013), which has a separate homomorphic evaluation key and can achieve stronger security named KH-CCA security. The contributions of this paper are twofold. First, recall that the syntax of KH-PKE assumes that homomorphic evaluation is performed for single operations, and KH-CCA security was formulated based on this syntax. Consequently, if the homomorphic evaluation algorithm is enhanced in a way of gathering up sequential operations as a single evaluation, then it is not obvious whether or not KH-CCA security is preserved. In this paper, we show that KH-CCA security is in general not preserved under such modification, while KH-CCA security is preserved when the original scheme additionally satisfies circuit privacy. Secondly, Catalano and Fiore (ACM CCS 2015) proposed a conversion method from linearly HE schemes into two-level HE schemes, the latter admitting addition and a single multiplication for ciphertexts. In this paper, we extend the conversion to the case of linearly KH-PKE schemes to obtain two-level KH-PKE schemes. Moreover, based on the generalized version of Catalano-Fiore conversion, we also construct a similar conversion from d-level KH-PKE schemes into 2d-level KH-PKE schemes.
ER -