One of major ideas to design a multivariate public key cryptosystem (MPKC) is to generate its quadratic forms by a polynomial map over an extension field. In fact, Matsumoto-Imai's scheme (1988), HFE (Patarin, 1996), MFE (Wang et al., 2006) and multi-HFE (Chen et al., 2008) are constructed in this way and Sflash (Akkar et al., 2003), Quartz (Patarin et al., 2001), Gui (Petzoldt et al, 2015) are variants of these schemes. An advantage of such extension field type MPKCs is to reduce the numbers of variables and equations to be solved in the decryption process. In the present paper, we study the security of MPKCs whose quadratic forms are derived from a “quadratic” map over an extension field and propose a new attack on such MPKCs. Our attack recovers partial information of the secret affine maps in polynomial time when the field is of odd characteristic. Once such partial information is recovered, the attacker can find the plain-text for a given cipher-text by solving a system of quadratic equations over the extension field whose numbers of variables and equations are same to those of the system of quadratic equations used in the decryption process.
Yasufumi HASHIMOTO
University of the Ryukyus
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Yasufumi HASHIMOTO, "Key Recovery Attacks on Multivariate Public Key Cryptosystems Derived from Quadratic Forms over an Extension Field" in IEICE TRANSACTIONS on Fundamentals,
vol. E100-A, no. 1, pp. 18-25, January 2017, doi: 10.1587/transfun.E100.A.18.
Abstract: One of major ideas to design a multivariate public key cryptosystem (MPKC) is to generate its quadratic forms by a polynomial map over an extension field. In fact, Matsumoto-Imai's scheme (1988), HFE (Patarin, 1996), MFE (Wang et al., 2006) and multi-HFE (Chen et al., 2008) are constructed in this way and Sflash (Akkar et al., 2003), Quartz (Patarin et al., 2001), Gui (Petzoldt et al, 2015) are variants of these schemes. An advantage of such extension field type MPKCs is to reduce the numbers of variables and equations to be solved in the decryption process. In the present paper, we study the security of MPKCs whose quadratic forms are derived from a “quadratic” map over an extension field and propose a new attack on such MPKCs. Our attack recovers partial information of the secret affine maps in polynomial time when the field is of odd characteristic. Once such partial information is recovered, the attacker can find the plain-text for a given cipher-text by solving a system of quadratic equations over the extension field whose numbers of variables and equations are same to those of the system of quadratic equations used in the decryption process.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E100.A.18/_p
Copy
@ARTICLE{e100-a_1_18,
author={Yasufumi HASHIMOTO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Key Recovery Attacks on Multivariate Public Key Cryptosystems Derived from Quadratic Forms over an Extension Field},
year={2017},
volume={E100-A},
number={1},
pages={18-25},
abstract={One of major ideas to design a multivariate public key cryptosystem (MPKC) is to generate its quadratic forms by a polynomial map over an extension field. In fact, Matsumoto-Imai's scheme (1988), HFE (Patarin, 1996), MFE (Wang et al., 2006) and multi-HFE (Chen et al., 2008) are constructed in this way and Sflash (Akkar et al., 2003), Quartz (Patarin et al., 2001), Gui (Petzoldt et al, 2015) are variants of these schemes. An advantage of such extension field type MPKCs is to reduce the numbers of variables and equations to be solved in the decryption process. In the present paper, we study the security of MPKCs whose quadratic forms are derived from a “quadratic” map over an extension field and propose a new attack on such MPKCs. Our attack recovers partial information of the secret affine maps in polynomial time when the field is of odd characteristic. Once such partial information is recovered, the attacker can find the plain-text for a given cipher-text by solving a system of quadratic equations over the extension field whose numbers of variables and equations are same to those of the system of quadratic equations used in the decryption process.},
keywords={},
doi={10.1587/transfun.E100.A.18},
ISSN={1745-1337},
month={January},}
Copy
TY - JOUR
TI - Key Recovery Attacks on Multivariate Public Key Cryptosystems Derived from Quadratic Forms over an Extension Field
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 18
EP - 25
AU - Yasufumi HASHIMOTO
PY - 2017
DO - 10.1587/transfun.E100.A.18
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E100-A
IS - 1
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - January 2017
AB - One of major ideas to design a multivariate public key cryptosystem (MPKC) is to generate its quadratic forms by a polynomial map over an extension field. In fact, Matsumoto-Imai's scheme (1988), HFE (Patarin, 1996), MFE (Wang et al., 2006) and multi-HFE (Chen et al., 2008) are constructed in this way and Sflash (Akkar et al., 2003), Quartz (Patarin et al., 2001), Gui (Petzoldt et al, 2015) are variants of these schemes. An advantage of such extension field type MPKCs is to reduce the numbers of variables and equations to be solved in the decryption process. In the present paper, we study the security of MPKCs whose quadratic forms are derived from a “quadratic” map over an extension field and propose a new attack on such MPKCs. Our attack recovers partial information of the secret affine maps in polynomial time when the field is of odd characteristic. Once such partial information is recovered, the attacker can find the plain-text for a given cipher-text by solving a system of quadratic equations over the extension field whose numbers of variables and equations are same to those of the system of quadratic equations used in the decryption process.
ER -