The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] extension field(13hit)

1-13hit
  • Construction of Singleton-Type Optimal LRCs from Existing LRCs and Near-MDS Codes

    Qiang FU  Buhong WANG  Ruihu LI  Ruipan YANG  

     
    PAPER-Coding Theory

      Pubricized:
    2023/01/31
      Vol:
    E106-A No:8
      Page(s):
    1051-1056

    Modern large scale distributed storage systems play a central role in data center and cloud storage, while node failure in data center is common. The lost data in failure node must be recovered efficiently. Locally repairable codes (LRCs) are designed to solve this problem. The locality of an LRC is the number of nodes that participate in recovering the lost data from node failure, which characterizes the repair efficiency. An LRC is called optimal if its minimum distance attains Singleton-type upper bound [1]. In this paper, using basic techniques of linear algebra over finite field, infinite optimal LRCs over extension fields are derived from a given optimal LRC over base field(or small field). Next, this paper investigates the relation between near-MDS codes with some constraints and LRCs, further, proposes an algorithm to determine locality of dual of a given linear code. Finally, based on near-MDS codes and the proposed algorithm, those obtained optimal LRCs are shown.

  • A Construction Method of an Isomorphic Map between Quadratic Extension Fields Applicable for SIDH Open Access

    Yuki NANJO  Masaaki SHIRASE  Takuya KUSAKA  Yasuyuki NOGAMI  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2020/07/06
      Vol:
    E103-A No:12
      Page(s):
    1403-1406

    A quadratic extension field (QEF) defined by F1 = Fp[α]/(α2+1) is typically used for a supersingular isogeny Diffie-Hellman (SIDH). However, there exist other attractive QEFs Fi that result in a competitive or rather efficient performing the SIDH comparing with that of F1. To exploit these QEFs without a time-consuming computation of the initial setting, the authors propose to convert existing parameter sets defined over F1 to Fi by using an isomorphic map F1 → Fi.

  • The Secure Parameters and Efficient Decryption Algorithm for Multivariate Public Key Cryptosystem EFC Open Access

    Yacheng WANG  Yasuhiko IKEMATSU  Dung Hoang DUONG  Tsuyoshi TAKAGI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:9
      Page(s):
    1028-1036

    At PQCrypto 2016, Szepieniec et al. proposed a new type of trapdoor called Extension Field Cancellation (EFC) for constructing secure multivariate encryption cryptosystems. They also specifically suggested two schemes EFCp- and EFCpt2- that apply this trapdoor and some modifiers. Although both of them seem to avoid all attacks used for cryptanalysis on multivariate cryptography, their decryption efficiency has room for improvement. On the other hand, their security was analyzed mainly through an algebraic attack of computing the Gröbner basis of the public key, and there possibly exists more effective attacks. In this paper, we introduce a more efficient decryption approach for EFCp- and EFCpt2-, which manages to avoid all redundant computation involved in the original decryption algorithms without altering their public key. In addition, we estimate the secure parameters for EFCp- and EFCpt2- through a hybrid attack of algebraic attack and exhaustive search.

  • Key Recovery Attacks on Multivariate Public Key Cryptosystems Derived from Quadratic Forms over an Extension Field

    Yasufumi HASHIMOTO  

     
    PAPER

      Vol:
    E100-A No:1
      Page(s):
    18-25

    One of major ideas to design a multivariate public key cryptosystem (MPKC) is to generate its quadratic forms by a polynomial map over an extension field. In fact, Matsumoto-Imai's scheme (1988), HFE (Patarin, 1996), MFE (Wang et al., 2006) and multi-HFE (Chen et al., 2008) are constructed in this way and Sflash (Akkar et al., 2003), Quartz (Patarin et al., 2001), Gui (Petzoldt et al, 2015) are variants of these schemes. An advantage of such extension field type MPKCs is to reduce the numbers of variables and equations to be solved in the decryption process. In the present paper, we study the security of MPKCs whose quadratic forms are derived from a “quadratic” map over an extension field and propose a new attack on such MPKCs. Our attack recovers partial information of the secret affine maps in polynomial time when the field is of odd characteristic. Once such partial information is recovered, the attacker can find the plain-text for a given cipher-text by solving a system of quadratic equations over the extension field whose numbers of variables and equations are same to those of the system of quadratic equations used in the decryption process.

  • A Note on the Construction of Differentially Uniform Permutations Using Extension Fields

    Qichun WANG  Haibin KAN  

     
    LETTER-Cryptography and Information Security

      Vol:
    E95-A No:11
      Page(s):
    2080-2083

    Constructing APN or 4-differentially uniform permutations achieving all the necessary criteria is an open problem, and the research on it progresses slowly. In ACISP 2011, Carlet put forth an idea for constructing differentially uniform permutations using extension fields, which was illustrated with a construction of a 4-differentially uniform (n,n)-permutation. The permutation has optimum algebraic degree and very good nonlinearity. However, it was proved to be a permutation only for n odd. In this note, we investigate further the construction of differentially uniform permutations using extension fields, and construct a 4-differentially uniform (n,n)-permutation for any n. These permutations also have optimum algebraic degree and very good nonlinearity. Moreover, we consider a more general type of construction, and illustrate it with an example of a 4-differentially uniform (n,n)-permutation with good cryptographic properties.

  • Universal Construction of a 12th Degree Extension Field for Asymmetric Pairing

    Masaaki SHIRASE  

     
    PAPER-Mathematics

      Vol:
    E94-A No:1
      Page(s):
    156-164

    It is necessary to perform arithmetic in Fp12 to use an Ate pairing on a Barreto-Naehrig (BN) curve, where p is a prime given by p(z)=36z4+36z3+24z2+6z+1 for some integer z. In many implementations of Ate pairings, Fp12 has been regarded as a 6th degree extension of Fp2, and it has been constructed by Fp12=Fp2[v]/(v6-ξ) for an element ξ ∈ Fp2 such that v6-ξ is irreducible in Fp2[v]. Such a ξ depends on the value of p, and we may use a mathematical software package to find ξ. In this paper it is shown that when z ≡ 7,11 (mod 12), we can universally construct Fp12 as Fp12=Fp2[v]/(v6-u-1), where Fp2=Fp[u]/(u2+1).

  • Cyclic Vector Multiplication Algorithm and Existence Probability of Gauss Period Normal Basis

    Kenta NEKADO  Yasuyuki NOGAMI  Hidehiro KATO  Yoshitaka MORIKAWA  

     
    PAPER-Mathematics

      Vol:
    E94-A No:1
      Page(s):
    172-179

    Recently, pairing-based cryptographic application sch-emes have attracted much attentions. In order to make the schemes more efficient, not only pairing algorithm but also arithmetic operations in extension field need to be efficient. For this purpose, the authors have proposed a series of cyclic vector multiplication algorithms (CVMAs) corresponding to the adopted bases such as type-I optimal normal basis (ONB). Note here that every basis adapted for the conventional CVMAs are just special classes of Gauss period normal bases (GNBs). In general, GNB is characterized with a certain positive integer h in addition to characteristic p and extension degree m, namely type-⟨h.m⟩ GNB in extension field Fpm. The parameter h needs to satisfy some conditions and such a positive integer h infinitely exists. From the viewpoint of the calculation cost of CVMA, it is preferred to be small. Thus, the minimal one denoted by hmin will be adapted. This paper focuses on two remaining problems: 1) CVMA has not been expanded for general GNBs yet and 2) the minimal hmin sometimes becomes large and it causes an inefficient case. First, this paper expands CVMA for general GNBs. It will improve some critical cases with large hmin reported in the conventional works. After that, this paper shows a theorem that, for a fixed prime number r, other prime numbers modulo r uniformly distribute between 1 to r-1. Then, based on this theorem, the existence probability of type-⟨hmin,m⟩ GNB in Fpm and also the expected value of hmin are explicitly given.

  • Finding a Basis Conversion Matrix via Prime Gauss Period Normal Basis

    Yasuyuki NOGAMI  Ryo NAMBA  Yoshitaka MORIKAWA  

     
    PAPER-Information Theory

      Vol:
    E92-A No:6
      Page(s):
    1500-1507

    This paper proposes a method to construct a basis conversion matrix between two given bases in Fpm. In the proposed method, Gauss period normal basis (GNB) works as a bridge between the two bases. The proposed method exploits this property and construct a basis conversion matrix mostly faster than EDF-based algorithm on average in polynomial time. Finally, simulation results are reported in which the proposed method compute a basis conversion matrix within 30 msec on average with Celeron (2.00 GHz) when mlog p≈160.

  • A Multiplication Algorithm in Fpm Such That p>m with a Special Class of Gauss Period Normal Bases

    Hidehiro KATO  Yasuyuki NOGAMI  Tomoki YOSHIDA  Yoshitaka MORIKAWA  

     
    PAPER-Mathematics

      Vol:
    E92-A No:1
      Page(s):
    173-181

    In this paper, a multiplication algorithm in extension field Fpm is proposed. Different from the previous works, the proposed algorithm can be applied for an arbitrary pair of characteristic p and extension degree m only except for the case when 4p divides m(p-1) and m is an even number. As written in the title, when p>m, 4p does not divide m(p-1). The proposed algorithm is derived by modifying cyclic vector multiplication algorithm (CVMA). We adopt a special class of Gauss period normal bases. At first in this paper, it is formulated as an algorithm and the calculation cost of the modified algorithm is evaluated. Then, compared to those of the previous works, some experimental results are shown. Finally, it is shown that the proposed algorithm is sufficient practical when extension degree m is small.

  • Fast Implementation of Extension Fields with TypeII ONB and Cyclic Vector Multiplication Algorithm

    Yasuyuki NOGAMI  Shigeru SHINONAGA  Yoshitaka MORIKAWA  

     
    PAPER

      Vol:
    E88-A No:5
      Page(s):
    1200-1208

    This paper proposes an extension field named TypeII AOPF. This extension field adopts TypeII optimal normal basis, cyclic vector multiplication algorithm, and Itoh-Tsujii inversion algorithm. The calculation costs for a multiplication and inversion in this field is clearly given with the extension degree. For example, the arithmetic operations in TypeII AOPF Fp5 is about 20% faster than those in OEF Fp5. Then, since CVMA is suitable for parallel processing, we show that TypeII AOPF is superior to AOPF as to parallel processing and then show that a multiplication in TypeII AOPF becomes about twice faster by parallelizing the CVMA computation in TypeII AOPF.

  • Finite Extension Field with Modulus of All-One Polynomial and Representation of Its Elements for Fast Arithmetic Operations

    Yasuyuki NOGAMI  Akinori SAITO  Yoshitaka MORIKAWA  

     
    PAPER-Information Theory

      Vol:
    E86-A No:9
      Page(s):
    2376-2387

    In many cryptographic applications, a large-order finite field is used as a definition field, and accordingly, many researches on a fast implementation of such a large-order extension field are reported. This paper proposes a definition field Fpm with its characteristic p a pseudo Mersenne number, the modular polynomial f(x) an irreducible all-one polynomial (AOP), and using a suitable basis. In this paper, we refer to this extension field as an all-one polynomial field (AOPF) and to its basis as pseudo polynomial basis (PPB). Among basic arithmetic operations in AOPF, a multiplication between non-zero elements and an inversion of a non-zero element are especially time-consuming. As a fast realization of the former, we propose cyclic vector multiplication algorithm (CVMA), which can be used for possible extension degree m and exploit a symmetric structure of multiplicands in order to reduce the number of operations. Accordingly, CVMA attains a 50% reduction of the number of scalar multiplications as compared to the usually adopted vector multiplication procedure. For fast realization of inversion, we use the Itoh-Tsujii algorithm (ITA) accompanied with Frobenius mapping (FM). Since this paper adopts the PPB, FM can be performed without any calculations. In addition to this feature, ITA over AOPF can be composed with self reciprocal vectors, and by using CVMA this fact can also save computation cost for inversion.

  • Efficient Arithmetic in Optimal Extension Fields Using Simultaneous Multiplication

    Mun-Kyu LEE  Kunsoo PARK  

     
    LETTER-Information Security

      Vol:
    E86-A No:5
      Page(s):
    1316-1321

    A new algorithm for efficient arithmetic in an optimal extension field is proposed. The new algorithm improves the speeds of multiplication, squaring, and inversion by performing two subfield multiplications simultaneously within a single integer multiplication instruction of a CPU. Our algorithm is used to improve throughputs of elliptic curve operations.

  • A Cyclic Window Algorithm for Elliptic Curves over OEF

    Tetsutaro KOBAYASHI  Fumitaka HOSHINO  Kazumaro AOKI  

     
    PAPER-Asymmetric Ciphers

      Vol:
    E86-A No:1
      Page(s):
    121-128

    This paper presents a new sliding window algorithm that is well-suited to an elliptic curve defined over an extension field for which the Frobenius map can be computed quickly, e.g., optimal extension field. The algorithm reduces elliptic curve group operations by approximately 15% for scalar multiplications for a practically used curve in compared to Lim-Hwang's results presented at PKC2000, which was the fastest previously reported. The algorithm was implemented on computers. Scalar multiplication can be accomplished in 573 µs, 595 µs, and 254 µs on Pentium II (450 MHz), 21164A (500 MHz), and 21264 (500 MHz) computers, respectively.