In this paper, we present self-interference (SI) cancellation techniques in the digital domain for in-band full-duplex systems employing orthogonal frequency division multiple access (OFDMA) in the downlink (DL) and single-carrier frequency division multiple access (SC-FDMA) in the uplink (UL), as in the long-term evolution (LTE) system. The proposed techniques use UL subcarrier nulling to accurately estimate SI channels without any UL interference. In addition, by exploiting the structures of the transmitter imperfection and the known or estimated parameters associated with the imperfection, the techniques can further improve the accuracy of SI channel estimation. We also analytically derive the lower bound of the mean square error (MSE) performance and the upper bound of the signal-to-interference-plus-noise ratio (SINR) performance for the techniques, and show that the performance of the techniques are close to the bounds. Furthermore, by utilizing the SI channel estimates and the nonlinear signal components of the SI caused by the imperfection to effectively eliminate the SI, the proposed techniques can achieve SINR performance very close to the one in perfect SI cancellation. Finally, because the SI channel estimation of the proposed techniques is performed in the time domain, the techniques do not require symbol time alignment between SI and UL symbols.
Changyong SHIN
Sun Moon University
Jiho HAN
Sun Moon University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Changyong SHIN, Jiho HAN, "Digital Self-Interference Cancellation for LTE-Compatible In-Band Full-Duplex Systems" in IEICE TRANSACTIONS on Fundamentals,
vol. E101-A, no. 5, pp. 822-830, May 2018, doi: 10.1587/transfun.E101.A.822.
Abstract: In this paper, we present self-interference (SI) cancellation techniques in the digital domain for in-band full-duplex systems employing orthogonal frequency division multiple access (OFDMA) in the downlink (DL) and single-carrier frequency division multiple access (SC-FDMA) in the uplink (UL), as in the long-term evolution (LTE) system. The proposed techniques use UL subcarrier nulling to accurately estimate SI channels without any UL interference. In addition, by exploiting the structures of the transmitter imperfection and the known or estimated parameters associated with the imperfection, the techniques can further improve the accuracy of SI channel estimation. We also analytically derive the lower bound of the mean square error (MSE) performance and the upper bound of the signal-to-interference-plus-noise ratio (SINR) performance for the techniques, and show that the performance of the techniques are close to the bounds. Furthermore, by utilizing the SI channel estimates and the nonlinear signal components of the SI caused by the imperfection to effectively eliminate the SI, the proposed techniques can achieve SINR performance very close to the one in perfect SI cancellation. Finally, because the SI channel estimation of the proposed techniques is performed in the time domain, the techniques do not require symbol time alignment between SI and UL symbols.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E101.A.822/_p
Copy
@ARTICLE{e101-a_5_822,
author={Changyong SHIN, Jiho HAN, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Digital Self-Interference Cancellation for LTE-Compatible In-Band Full-Duplex Systems},
year={2018},
volume={E101-A},
number={5},
pages={822-830},
abstract={In this paper, we present self-interference (SI) cancellation techniques in the digital domain for in-band full-duplex systems employing orthogonal frequency division multiple access (OFDMA) in the downlink (DL) and single-carrier frequency division multiple access (SC-FDMA) in the uplink (UL), as in the long-term evolution (LTE) system. The proposed techniques use UL subcarrier nulling to accurately estimate SI channels without any UL interference. In addition, by exploiting the structures of the transmitter imperfection and the known or estimated parameters associated with the imperfection, the techniques can further improve the accuracy of SI channel estimation. We also analytically derive the lower bound of the mean square error (MSE) performance and the upper bound of the signal-to-interference-plus-noise ratio (SINR) performance for the techniques, and show that the performance of the techniques are close to the bounds. Furthermore, by utilizing the SI channel estimates and the nonlinear signal components of the SI caused by the imperfection to effectively eliminate the SI, the proposed techniques can achieve SINR performance very close to the one in perfect SI cancellation. Finally, because the SI channel estimation of the proposed techniques is performed in the time domain, the techniques do not require symbol time alignment between SI and UL symbols.},
keywords={},
doi={10.1587/transfun.E101.A.822},
ISSN={1745-1337},
month={May},}
Copy
TY - JOUR
TI - Digital Self-Interference Cancellation for LTE-Compatible In-Band Full-Duplex Systems
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 822
EP - 830
AU - Changyong SHIN
AU - Jiho HAN
PY - 2018
DO - 10.1587/transfun.E101.A.822
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E101-A
IS - 5
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - May 2018
AB - In this paper, we present self-interference (SI) cancellation techniques in the digital domain for in-band full-duplex systems employing orthogonal frequency division multiple access (OFDMA) in the downlink (DL) and single-carrier frequency division multiple access (SC-FDMA) in the uplink (UL), as in the long-term evolution (LTE) system. The proposed techniques use UL subcarrier nulling to accurately estimate SI channels without any UL interference. In addition, by exploiting the structures of the transmitter imperfection and the known or estimated parameters associated with the imperfection, the techniques can further improve the accuracy of SI channel estimation. We also analytically derive the lower bound of the mean square error (MSE) performance and the upper bound of the signal-to-interference-plus-noise ratio (SINR) performance for the techniques, and show that the performance of the techniques are close to the bounds. Furthermore, by utilizing the SI channel estimates and the nonlinear signal components of the SI caused by the imperfection to effectively eliminate the SI, the proposed techniques can achieve SINR performance very close to the one in perfect SI cancellation. Finally, because the SI channel estimation of the proposed techniques is performed in the time domain, the techniques do not require symbol time alignment between SI and UL symbols.
ER -