Mobile video traffic is expected to increase explosively because of the proliferating number of Wi-Fi terminals. An overloaded multiple-input multiple-output (MIMO) technique allows the receiver to implement smaller number of antennas than the transmitter in exchange for degradation in video quality and a large amount of computational complexity for postcoding at the receiver side. This paper proposes a novel linear precoder for high-quality video streaming in overloaded multiuser MIMO systems, which protects visually significant portions of a video stream. A low complexity postcoder is also proposed, which detects some of data symbols by linear detection and the others by a prevoting vector cancellation (PVC) approach. It is shown from simulation results that the combination use of the proposed precoder and postcoder achieves higher-quality video streaming to multiple users in a wider range of signal-to-noise ratio (SNR) than a conventional unequal error protection scheme. The proposed precoder attains 40dB in peak signal-to-noise ratio even in poor channel conditions such as the SNR of 12dB. In addition, due to the stepwise acquisition of data symbols by means of linear detection and PVC, the proposed postcoder reduces the number of complex additions by 76% and that of multiplications by 64% compared to the conventional PVC.
Koji TASHIRO
Kyushu Institute of Technology
Masayuki KUROSAKI
Kyushu Institute of Technology
Hiroshi OCHI
Kyushu Institute of Technology
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Koji TASHIRO, Masayuki KUROSAKI, Hiroshi OCHI, "Precoder and Postcoder Design for Wireless Video Streaming with Overloaded Multiuser MIMO-OFDM Systems" in IEICE TRANSACTIONS on Fundamentals,
vol. E102-A, no. 12, pp. 1825-1833, December 2019, doi: 10.1587/transfun.E102.A.1825.
Abstract: Mobile video traffic is expected to increase explosively because of the proliferating number of Wi-Fi terminals. An overloaded multiple-input multiple-output (MIMO) technique allows the receiver to implement smaller number of antennas than the transmitter in exchange for degradation in video quality and a large amount of computational complexity for postcoding at the receiver side. This paper proposes a novel linear precoder for high-quality video streaming in overloaded multiuser MIMO systems, which protects visually significant portions of a video stream. A low complexity postcoder is also proposed, which detects some of data symbols by linear detection and the others by a prevoting vector cancellation (PVC) approach. It is shown from simulation results that the combination use of the proposed precoder and postcoder achieves higher-quality video streaming to multiple users in a wider range of signal-to-noise ratio (SNR) than a conventional unequal error protection scheme. The proposed precoder attains 40dB in peak signal-to-noise ratio even in poor channel conditions such as the SNR of 12dB. In addition, due to the stepwise acquisition of data symbols by means of linear detection and PVC, the proposed postcoder reduces the number of complex additions by 76% and that of multiplications by 64% compared to the conventional PVC.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E102.A.1825/_p
Copy
@ARTICLE{e102-a_12_1825,
author={Koji TASHIRO, Masayuki KUROSAKI, Hiroshi OCHI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Precoder and Postcoder Design for Wireless Video Streaming with Overloaded Multiuser MIMO-OFDM Systems},
year={2019},
volume={E102-A},
number={12},
pages={1825-1833},
abstract={Mobile video traffic is expected to increase explosively because of the proliferating number of Wi-Fi terminals. An overloaded multiple-input multiple-output (MIMO) technique allows the receiver to implement smaller number of antennas than the transmitter in exchange for degradation in video quality and a large amount of computational complexity for postcoding at the receiver side. This paper proposes a novel linear precoder for high-quality video streaming in overloaded multiuser MIMO systems, which protects visually significant portions of a video stream. A low complexity postcoder is also proposed, which detects some of data symbols by linear detection and the others by a prevoting vector cancellation (PVC) approach. It is shown from simulation results that the combination use of the proposed precoder and postcoder achieves higher-quality video streaming to multiple users in a wider range of signal-to-noise ratio (SNR) than a conventional unequal error protection scheme. The proposed precoder attains 40dB in peak signal-to-noise ratio even in poor channel conditions such as the SNR of 12dB. In addition, due to the stepwise acquisition of data symbols by means of linear detection and PVC, the proposed postcoder reduces the number of complex additions by 76% and that of multiplications by 64% compared to the conventional PVC.},
keywords={},
doi={10.1587/transfun.E102.A.1825},
ISSN={1745-1337},
month={December},}
Copy
TY - JOUR
TI - Precoder and Postcoder Design for Wireless Video Streaming with Overloaded Multiuser MIMO-OFDM Systems
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1825
EP - 1833
AU - Koji TASHIRO
AU - Masayuki KUROSAKI
AU - Hiroshi OCHI
PY - 2019
DO - 10.1587/transfun.E102.A.1825
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E102-A
IS - 12
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - December 2019
AB - Mobile video traffic is expected to increase explosively because of the proliferating number of Wi-Fi terminals. An overloaded multiple-input multiple-output (MIMO) technique allows the receiver to implement smaller number of antennas than the transmitter in exchange for degradation in video quality and a large amount of computational complexity for postcoding at the receiver side. This paper proposes a novel linear precoder for high-quality video streaming in overloaded multiuser MIMO systems, which protects visually significant portions of a video stream. A low complexity postcoder is also proposed, which detects some of data symbols by linear detection and the others by a prevoting vector cancellation (PVC) approach. It is shown from simulation results that the combination use of the proposed precoder and postcoder achieves higher-quality video streaming to multiple users in a wider range of signal-to-noise ratio (SNR) than a conventional unequal error protection scheme. The proposed precoder attains 40dB in peak signal-to-noise ratio even in poor channel conditions such as the SNR of 12dB. In addition, due to the stepwise acquisition of data symbols by means of linear detection and PVC, the proposed postcoder reduces the number of complex additions by 76% and that of multiplications by 64% compared to the conventional PVC.
ER -