In wireless OFDM systems, the system performance is suffered from frequency offset and symbol timing offset due to the Doppler effect. Using the discrete Fourier transform (DFT) and inverse discrete Fourier transform (IDFT) for traditional signal transformation from the time-domain into frequency-domain, and vice versa, the system performance may be severely degraded. To make the OFDM system that can tolerate the above problems, we have considered that the harmonic transform can be applicable to the traditional signal transformation, thereby improving the system performance. In this paper, we combine the good characteristics of harmonic transform and instantaneous frequency to be a novel transformation for wireless OFDM systems. We propose a modified discrete harmonic transform (MDHT) which can be performed adaptively. Our proposed scheme called the modified discrete harmonic transform OFDM (MDHT-OFDM scheme). We derive the equations of the novel discrete harmonic transform which are suitable for wireless OFDM systems and the novel channel estimation cooperated with the novel transformation. The proposed channel estimation is performed in both time-domain and frequency-domain. The performance of a MDHT-OFDM scheme is evaluated by means of a simulation. We compare the performance of a MDHT-OFDM scheme with one of the conventional DFT-OFDM scheme in the term of symbol error rate (SER). MDHT-OFDM scheme can achieve better performance than that of the conventional DFT-OFDM scheme in mitigating the Doppler spread.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Saiyan SAIYOD, Sakchai THIPCHAKSURAT, Ruttikorn VARAKULSIRIPUNTH, "Doppler Spread Mitigation Using Harmonic Transform for Wireless OFDM Systems in Mobile Communications" in IEICE TRANSACTIONS on Fundamentals,
vol. E93-A, no. 12, pp. 2634-2645, December 2010, doi: 10.1587/transfun.E93.A.2634.
Abstract: In wireless OFDM systems, the system performance is suffered from frequency offset and symbol timing offset due to the Doppler effect. Using the discrete Fourier transform (DFT) and inverse discrete Fourier transform (IDFT) for traditional signal transformation from the time-domain into frequency-domain, and vice versa, the system performance may be severely degraded. To make the OFDM system that can tolerate the above problems, we have considered that the harmonic transform can be applicable to the traditional signal transformation, thereby improving the system performance. In this paper, we combine the good characteristics of harmonic transform and instantaneous frequency to be a novel transformation for wireless OFDM systems. We propose a modified discrete harmonic transform (MDHT) which can be performed adaptively. Our proposed scheme called the modified discrete harmonic transform OFDM (MDHT-OFDM scheme). We derive the equations of the novel discrete harmonic transform which are suitable for wireless OFDM systems and the novel channel estimation cooperated with the novel transformation. The proposed channel estimation is performed in both time-domain and frequency-domain. The performance of a MDHT-OFDM scheme is evaluated by means of a simulation. We compare the performance of a MDHT-OFDM scheme with one of the conventional DFT-OFDM scheme in the term of symbol error rate (SER). MDHT-OFDM scheme can achieve better performance than that of the conventional DFT-OFDM scheme in mitigating the Doppler spread.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E93.A.2634/_p
Copy
@ARTICLE{e93-a_12_2634,
author={Saiyan SAIYOD, Sakchai THIPCHAKSURAT, Ruttikorn VARAKULSIRIPUNTH, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Doppler Spread Mitigation Using Harmonic Transform for Wireless OFDM Systems in Mobile Communications},
year={2010},
volume={E93-A},
number={12},
pages={2634-2645},
abstract={In wireless OFDM systems, the system performance is suffered from frequency offset and symbol timing offset due to the Doppler effect. Using the discrete Fourier transform (DFT) and inverse discrete Fourier transform (IDFT) for traditional signal transformation from the time-domain into frequency-domain, and vice versa, the system performance may be severely degraded. To make the OFDM system that can tolerate the above problems, we have considered that the harmonic transform can be applicable to the traditional signal transformation, thereby improving the system performance. In this paper, we combine the good characteristics of harmonic transform and instantaneous frequency to be a novel transformation for wireless OFDM systems. We propose a modified discrete harmonic transform (MDHT) which can be performed adaptively. Our proposed scheme called the modified discrete harmonic transform OFDM (MDHT-OFDM scheme). We derive the equations of the novel discrete harmonic transform which are suitable for wireless OFDM systems and the novel channel estimation cooperated with the novel transformation. The proposed channel estimation is performed in both time-domain and frequency-domain. The performance of a MDHT-OFDM scheme is evaluated by means of a simulation. We compare the performance of a MDHT-OFDM scheme with one of the conventional DFT-OFDM scheme in the term of symbol error rate (SER). MDHT-OFDM scheme can achieve better performance than that of the conventional DFT-OFDM scheme in mitigating the Doppler spread.},
keywords={},
doi={10.1587/transfun.E93.A.2634},
ISSN={1745-1337},
month={December},}
Copy
TY - JOUR
TI - Doppler Spread Mitigation Using Harmonic Transform for Wireless OFDM Systems in Mobile Communications
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2634
EP - 2645
AU - Saiyan SAIYOD
AU - Sakchai THIPCHAKSURAT
AU - Ruttikorn VARAKULSIRIPUNTH
PY - 2010
DO - 10.1587/transfun.E93.A.2634
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E93-A
IS - 12
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - December 2010
AB - In wireless OFDM systems, the system performance is suffered from frequency offset and symbol timing offset due to the Doppler effect. Using the discrete Fourier transform (DFT) and inverse discrete Fourier transform (IDFT) for traditional signal transformation from the time-domain into frequency-domain, and vice versa, the system performance may be severely degraded. To make the OFDM system that can tolerate the above problems, we have considered that the harmonic transform can be applicable to the traditional signal transformation, thereby improving the system performance. In this paper, we combine the good characteristics of harmonic transform and instantaneous frequency to be a novel transformation for wireless OFDM systems. We propose a modified discrete harmonic transform (MDHT) which can be performed adaptively. Our proposed scheme called the modified discrete harmonic transform OFDM (MDHT-OFDM scheme). We derive the equations of the novel discrete harmonic transform which are suitable for wireless OFDM systems and the novel channel estimation cooperated with the novel transformation. The proposed channel estimation is performed in both time-domain and frequency-domain. The performance of a MDHT-OFDM scheme is evaluated by means of a simulation. We compare the performance of a MDHT-OFDM scheme with one of the conventional DFT-OFDM scheme in the term of symbol error rate (SER). MDHT-OFDM scheme can achieve better performance than that of the conventional DFT-OFDM scheme in mitigating the Doppler spread.
ER -