The search functionality is under construction.

IEICE TRANSACTIONS on Fundamentals

Write Control Method for Nonvolatile Flip-Flops Based on State Transition Analysis

Naoya OKADA, Yuichi NAKAMURA, Shinji KIMURA

  • Full Text Views

    0

  • Cite this

Summary :

Nonvolatile flip-flop enables leakage power reduction in logic circuits and quick return from standby mode. However, it has limited write endurance, and its power consumption for writing is larger than that of conventional D flip-flop (DFF). For this reason, it is important to reduce the number of write operations. The write operations can be reduced by stopping the clock signal to synchronous flip-flops because write operations are executed only when the clock is applied to the flip-flops. In such clock gating, a method using Exclusive OR (XOR) of the current value and the new value as the control signal is well known. The XOR based method is effective, but there are several cases where the write operations can be reduced even if the current value and the new value are different. The paper proposes a method to detect such unnecessary write operations based on state transition analysis, and proposes a write control method to save power consumption of nonvolatile flip-flops. In the method, redundant bits are detected to reduce the number of write operations. If the next state and the outputs do not depend on some current bit, the bit is redundant and not necessary to write. The method is based on Binary Decision Diagram (BDD) calculation. We construct write control circuits to stop the clock signal by converting BDDs representing a set of states where write operations are unnecessary. Proposed method can be combined with the XOR based method and reduce the total write operations. We apply combined method to some benchmark circuits and estimate the power consumption with Synopsys NanoSim. On average, 15.0% power consumption can be reduced compared with only the XOR based method.

Publication
IEICE TRANSACTIONS on Fundamentals Vol.E96-A No.6 pp.1264-1272
Publication Date
2013/06/01
Publicized
Online ISSN
1745-1337
DOI
10.1587/transfun.E96.A.1264
Type of Manuscript
Special Section PAPER (Special Section on Circuit, System, and Computer Technologies)
Category

Authors

Naoya OKADA
  Waseda University
Yuichi NAKAMURA
  NEC Corporation
Shinji KIMURA
  Waseda University

Keyword