The search functionality is under construction.

Keyword Search Result

[Keyword] state transition analysis(2hit)

1-2hit
  • Write Control Method for Nonvolatile Flip-Flops Based on State Transition Analysis

    Naoya OKADA  Yuichi NAKAMURA  Shinji KIMURA  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1264-1272

    Nonvolatile flip-flop enables leakage power reduction in logic circuits and quick return from standby mode. However, it has limited write endurance, and its power consumption for writing is larger than that of conventional D flip-flop (DFF). For this reason, it is important to reduce the number of write operations. The write operations can be reduced by stopping the clock signal to synchronous flip-flops because write operations are executed only when the clock is applied to the flip-flops. In such clock gating, a method using Exclusive OR (XOR) of the current value and the new value as the control signal is well known. The XOR based method is effective, but there are several cases where the write operations can be reduced even if the current value and the new value are different. The paper proposes a method to detect such unnecessary write operations based on state transition analysis, and proposes a write control method to save power consumption of nonvolatile flip-flops. In the method, redundant bits are detected to reduce the number of write operations. If the next state and the outputs do not depend on some current bit, the bit is redundant and not necessary to write. The method is based on Binary Decision Diagram (BDD) calculation. We construct write control circuits to stop the clock signal by converting BDDs representing a set of states where write operations are unnecessary. Proposed method can be combined with the XOR based method and reduce the total write operations. We apply combined method to some benchmark circuits and estimate the power consumption with Synopsys NanoSim. On average, 15.0% power consumption can be reduced compared with only the XOR based method.

  • A Fast Neural Network Simulator for State Transition Analysis

    Atsushi KAMO  Hiroshi NINOMIYA  Teru YONEYAMA  Hideki ASAI  

     
    PAPER

      Vol:
    E82-A No:9
      Page(s):
    1796-1801

    This paper describes an efficient simulator for state transition analysis of multivalued continuous-time neural networks, where the multivalued transfer function of neuron is regarded as a stepwise constant one. Use of stepwise constant method enables to analyse the state transition of the network without solving explicitly the differential equations. This method also enables to select the optimal timestep in numerical integration. The proposed method is implemented on the simulator and applied to the general neural network analysis. Furthermore, this is compared with the conventional simulators. Finally, it is shown that our simulator is drastically faster and more practical than the conventional simulators.