Time synchronization is of paramount importance in wireless sensor networks (WSNs) due to the inherent distributed characteristics of WSNs. Border surveillance WSNs, especially, require a highly secure and accurate time synchronization scheme to detect and track intruders. In this paper, we propose a Secure and Efficient Time synchronization scheme for Border surveillance WSNs (SETB) which meets the requirements of border surveillance WSNs while minimizing the resource usage. To accomplish this goal, we first define the performance and security requirements for time synchronization in border surveillance WSNs in detail. Then, we build our time synchronization scheme optimized for these requirements. By utilizing both heterogeneous WSNs and one-way key chains, SETB satisfies the requirements with much less overhead than existing schemes. Additionally, we introduce on-demand time synchronization, which implies that time synchronization is conducted only when an intruder enters the WSN, in order to reduce energy consumption. Finally, we propose a method of deploying time-source nodes to keep the synchronization error within the requirement. Our analysis shows that SETB not only satisfies the performance and security requirements, but also is highly efficient in terms of communication and computation overhead, thus minimizing energy consumption.
Daehee KIM
Korea University
Sangwook KANG
Korea University
Sunshin AN
Korea University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Daehee KIM, Sangwook KANG, Sunshin AN, "Secure and Efficient Time Synchronization for Border Surveillance Wireless Sensor Networks" in IEICE TRANSACTIONS on Fundamentals,
vol. E99-A, no. 1, pp. 385-401, January 2016, doi: 10.1587/transfun.E99.A.385.
Abstract: Time synchronization is of paramount importance in wireless sensor networks (WSNs) due to the inherent distributed characteristics of WSNs. Border surveillance WSNs, especially, require a highly secure and accurate time synchronization scheme to detect and track intruders. In this paper, we propose a Secure and Efficient Time synchronization scheme for Border surveillance WSNs (SETB) which meets the requirements of border surveillance WSNs while minimizing the resource usage. To accomplish this goal, we first define the performance and security requirements for time synchronization in border surveillance WSNs in detail. Then, we build our time synchronization scheme optimized for these requirements. By utilizing both heterogeneous WSNs and one-way key chains, SETB satisfies the requirements with much less overhead than existing schemes. Additionally, we introduce on-demand time synchronization, which implies that time synchronization is conducted only when an intruder enters the WSN, in order to reduce energy consumption. Finally, we propose a method of deploying time-source nodes to keep the synchronization error within the requirement. Our analysis shows that SETB not only satisfies the performance and security requirements, but also is highly efficient in terms of communication and computation overhead, thus minimizing energy consumption.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E99.A.385/_p
Copy
@ARTICLE{e99-a_1_385,
author={Daehee KIM, Sangwook KANG, Sunshin AN, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Secure and Efficient Time Synchronization for Border Surveillance Wireless Sensor Networks},
year={2016},
volume={E99-A},
number={1},
pages={385-401},
abstract={Time synchronization is of paramount importance in wireless sensor networks (WSNs) due to the inherent distributed characteristics of WSNs. Border surveillance WSNs, especially, require a highly secure and accurate time synchronization scheme to detect and track intruders. In this paper, we propose a Secure and Efficient Time synchronization scheme for Border surveillance WSNs (SETB) which meets the requirements of border surveillance WSNs while minimizing the resource usage. To accomplish this goal, we first define the performance and security requirements for time synchronization in border surveillance WSNs in detail. Then, we build our time synchronization scheme optimized for these requirements. By utilizing both heterogeneous WSNs and one-way key chains, SETB satisfies the requirements with much less overhead than existing schemes. Additionally, we introduce on-demand time synchronization, which implies that time synchronization is conducted only when an intruder enters the WSN, in order to reduce energy consumption. Finally, we propose a method of deploying time-source nodes to keep the synchronization error within the requirement. Our analysis shows that SETB not only satisfies the performance and security requirements, but also is highly efficient in terms of communication and computation overhead, thus minimizing energy consumption.},
keywords={},
doi={10.1587/transfun.E99.A.385},
ISSN={1745-1337},
month={January},}
Copy
TY - JOUR
TI - Secure and Efficient Time Synchronization for Border Surveillance Wireless Sensor Networks
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 385
EP - 401
AU - Daehee KIM
AU - Sangwook KANG
AU - Sunshin AN
PY - 2016
DO - 10.1587/transfun.E99.A.385
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E99-A
IS - 1
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - January 2016
AB - Time synchronization is of paramount importance in wireless sensor networks (WSNs) due to the inherent distributed characteristics of WSNs. Border surveillance WSNs, especially, require a highly secure and accurate time synchronization scheme to detect and track intruders. In this paper, we propose a Secure and Efficient Time synchronization scheme for Border surveillance WSNs (SETB) which meets the requirements of border surveillance WSNs while minimizing the resource usage. To accomplish this goal, we first define the performance and security requirements for time synchronization in border surveillance WSNs in detail. Then, we build our time synchronization scheme optimized for these requirements. By utilizing both heterogeneous WSNs and one-way key chains, SETB satisfies the requirements with much less overhead than existing schemes. Additionally, we introduce on-demand time synchronization, which implies that time synchronization is conducted only when an intruder enters the WSN, in order to reduce energy consumption. Finally, we propose a method of deploying time-source nodes to keep the synchronization error within the requirement. Our analysis shows that SETB not only satisfies the performance and security requirements, but also is highly efficient in terms of communication and computation overhead, thus minimizing energy consumption.
ER -