In this paper, we revisit a generally accepted opinion: implementing Elliptic Curve Cryptosystem (ECC) over GF(2m) on sensor motes using small word size is not appropriate because XOR multiplication over GF(2m) is not efficiently supported by current low-powered microprocessors. Although there are some implementations over GF(2m) on sensor motes, their performances are not satisfactory enough to be used for wireless sensor networks (WSNs). We have found that a field multiplication over GF(2m) are involved in a number of redundant memory accesses and its inefficiency is originated from this problem. Moreover, the field reduction process also requires many redundant memory accesses. Therefore, we propose some techniques for reducing unnecessary memory accesses. With the proposed strategies, the running time of field multiplication and reduction over GF(2163) can be decreased by 21.1% and 24.7%, respectively. These savings noticeably decrease execution times spent in Elliptic Curve Digital Signature Algorithm (ECDSA) operations (signing and verification) by around 15-19%. We present TinyECCK (Tiny Elliptic Curve Cryptosystem with Koblitz curve - a kind of TinyOS package supporting elliptic curve operations) which is the first implementation of Koblitz curve on sensor motes as far as we know. Through comparisons with existing software implementations of ECC built in C or hybrid of C and inline assembly on sensor motes, we show that TinyECCK outperforms them in terms of running time, code size and supporting services. Furthermore, we show that a field multiplication over GF(2m) can be faster than that over GF(p) on 8-bit Atmega128 processor by comparing TinyECCK with TinyECC, a well-known ECC implementation over GF(p). TinyECCK with sect163k1 can generate a signature and verify it in 1.37 and 2.32 secs on a Micaz mote with 13,748-byte of ROM and 1,004-byte of RAM.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Seog Chung SEO, Dong-Guk HAN, Hyung Chan KIM, Seokhie HONG, "TinyECCK: Efficient Elliptic Curve Cryptography Implementation over GF(2m) on 8-Bit Micaz Mote" in IEICE TRANSACTIONS on Information,
vol. E91-D, no. 5, pp. 1338-1347, May 2008, doi: 10.1093/ietisy/e91-d.5.1338.
Abstract: In this paper, we revisit a generally accepted opinion: implementing Elliptic Curve Cryptosystem (ECC) over GF(2m) on sensor motes using small word size is not appropriate because XOR multiplication over GF(2m) is not efficiently supported by current low-powered microprocessors. Although there are some implementations over GF(2m) on sensor motes, their performances are not satisfactory enough to be used for wireless sensor networks (WSNs). We have found that a field multiplication over GF(2m) are involved in a number of redundant memory accesses and its inefficiency is originated from this problem. Moreover, the field reduction process also requires many redundant memory accesses. Therefore, we propose some techniques for reducing unnecessary memory accesses. With the proposed strategies, the running time of field multiplication and reduction over GF(2163) can be decreased by 21.1% and 24.7%, respectively. These savings noticeably decrease execution times spent in Elliptic Curve Digital Signature Algorithm (ECDSA) operations (signing and verification) by around 15-19%. We present TinyECCK (Tiny Elliptic Curve Cryptosystem with Koblitz curve - a kind of TinyOS package supporting elliptic curve operations) which is the first implementation of Koblitz curve on sensor motes as far as we know. Through comparisons with existing software implementations of ECC built in C or hybrid of C and inline assembly on sensor motes, we show that TinyECCK outperforms them in terms of running time, code size and supporting services. Furthermore, we show that a field multiplication over GF(2m) can be faster than that over GF(p) on 8-bit Atmega128 processor by comparing TinyECCK with TinyECC, a well-known ECC implementation over GF(p). TinyECCK with sect163k1 can generate a signature and verify it in 1.37 and 2.32 secs on a Micaz mote with 13,748-byte of ROM and 1,004-byte of RAM.
URL: https://global.ieice.org/en_transactions/information/10.1093/ietisy/e91-d.5.1338/_p
Copy
@ARTICLE{e91-d_5_1338,
author={Seog Chung SEO, Dong-Guk HAN, Hyung Chan KIM, Seokhie HONG, },
journal={IEICE TRANSACTIONS on Information},
title={TinyECCK: Efficient Elliptic Curve Cryptography Implementation over GF(2m) on 8-Bit Micaz Mote},
year={2008},
volume={E91-D},
number={5},
pages={1338-1347},
abstract={In this paper, we revisit a generally accepted opinion: implementing Elliptic Curve Cryptosystem (ECC) over GF(2m) on sensor motes using small word size is not appropriate because XOR multiplication over GF(2m) is not efficiently supported by current low-powered microprocessors. Although there are some implementations over GF(2m) on sensor motes, their performances are not satisfactory enough to be used for wireless sensor networks (WSNs). We have found that a field multiplication over GF(2m) are involved in a number of redundant memory accesses and its inefficiency is originated from this problem. Moreover, the field reduction process also requires many redundant memory accesses. Therefore, we propose some techniques for reducing unnecessary memory accesses. With the proposed strategies, the running time of field multiplication and reduction over GF(2163) can be decreased by 21.1% and 24.7%, respectively. These savings noticeably decrease execution times spent in Elliptic Curve Digital Signature Algorithm (ECDSA) operations (signing and verification) by around 15-19%. We present TinyECCK (Tiny Elliptic Curve Cryptosystem with Koblitz curve - a kind of TinyOS package supporting elliptic curve operations) which is the first implementation of Koblitz curve on sensor motes as far as we know. Through comparisons with existing software implementations of ECC built in C or hybrid of C and inline assembly on sensor motes, we show that TinyECCK outperforms them in terms of running time, code size and supporting services. Furthermore, we show that a field multiplication over GF(2m) can be faster than that over GF(p) on 8-bit Atmega128 processor by comparing TinyECCK with TinyECC, a well-known ECC implementation over GF(p). TinyECCK with sect163k1 can generate a signature and verify it in 1.37 and 2.32 secs on a Micaz mote with 13,748-byte of ROM and 1,004-byte of RAM.},
keywords={},
doi={10.1093/ietisy/e91-d.5.1338},
ISSN={1745-1361},
month={May},}
Copy
TY - JOUR
TI - TinyECCK: Efficient Elliptic Curve Cryptography Implementation over GF(2m) on 8-Bit Micaz Mote
T2 - IEICE TRANSACTIONS on Information
SP - 1338
EP - 1347
AU - Seog Chung SEO
AU - Dong-Guk HAN
AU - Hyung Chan KIM
AU - Seokhie HONG
PY - 2008
DO - 10.1093/ietisy/e91-d.5.1338
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E91-D
IS - 5
JA - IEICE TRANSACTIONS on Information
Y1 - May 2008
AB - In this paper, we revisit a generally accepted opinion: implementing Elliptic Curve Cryptosystem (ECC) over GF(2m) on sensor motes using small word size is not appropriate because XOR multiplication over GF(2m) is not efficiently supported by current low-powered microprocessors. Although there are some implementations over GF(2m) on sensor motes, their performances are not satisfactory enough to be used for wireless sensor networks (WSNs). We have found that a field multiplication over GF(2m) are involved in a number of redundant memory accesses and its inefficiency is originated from this problem. Moreover, the field reduction process also requires many redundant memory accesses. Therefore, we propose some techniques for reducing unnecessary memory accesses. With the proposed strategies, the running time of field multiplication and reduction over GF(2163) can be decreased by 21.1% and 24.7%, respectively. These savings noticeably decrease execution times spent in Elliptic Curve Digital Signature Algorithm (ECDSA) operations (signing and verification) by around 15-19%. We present TinyECCK (Tiny Elliptic Curve Cryptosystem with Koblitz curve - a kind of TinyOS package supporting elliptic curve operations) which is the first implementation of Koblitz curve on sensor motes as far as we know. Through comparisons with existing software implementations of ECC built in C or hybrid of C and inline assembly on sensor motes, we show that TinyECCK outperforms them in terms of running time, code size and supporting services. Furthermore, we show that a field multiplication over GF(2m) can be faster than that over GF(p) on 8-bit Atmega128 processor by comparing TinyECCK with TinyECC, a well-known ECC implementation over GF(p). TinyECCK with sect163k1 can generate a signature and verify it in 1.37 and 2.32 secs on a Micaz mote with 13,748-byte of ROM and 1,004-byte of RAM.
ER -