The recording of electrocardiogram (ECG) signals for the purpose of finding arrhythmias takes 24 hours. Generally speaking, changes in R-R intervals are used to detect arrhythmias. Our purpose is to develop an algorithm which efficiently detects R-R intervals. This system uses the R-wave position to calculate R-R intervals and then detects any arrhythmias. The algorithm searches for only the short time duration estimated from the most recent R-wave position in order to detect the next R-wave efficiently. We call this duration a WINDOW. A WINDOW is decided according to a proposed search algorithm so that the next R-wave can be expected in the WINDOW. In a case in which an S-wave is enhanced for some reason such as the manner in which the electrodes are installed in the system, the S-wave positions are taken to calculate the peak intervals instead of the R-wave. However, baseline wander and noise contained in the ECG signal have a deterrent effect on the accuracy with which the R-wave or the S-wave position is determined. In order to improve detection, the ECG signal is preprocessed using a Band-Pass Filter (BPF) which is composed of simple Cascaded Integrator Comb (CIC) filters. The American Heart Association (AHA) database was used in the simulation with the proposed algorithm. Accurate detection of the R-wave position was achieved in 99% of cases and efficient extraction of R-R intervals was possible.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Takashi KOHAMA, Shogo NAKAMURA, Hiroshi HOSHINO, "An Efficient R-R Interval Detection for ECG Monitoring System" in IEICE TRANSACTIONS on Information,
vol. E82-D, no. 10, pp. 1425-1432, October 1999, doi: .
Abstract: The recording of electrocardiogram (ECG) signals for the purpose of finding arrhythmias takes 24 hours. Generally speaking, changes in R-R intervals are used to detect arrhythmias. Our purpose is to develop an algorithm which efficiently detects R-R intervals. This system uses the R-wave position to calculate R-R intervals and then detects any arrhythmias. The algorithm searches for only the short time duration estimated from the most recent R-wave position in order to detect the next R-wave efficiently. We call this duration a WINDOW. A WINDOW is decided according to a proposed search algorithm so that the next R-wave can be expected in the WINDOW. In a case in which an S-wave is enhanced for some reason such as the manner in which the electrodes are installed in the system, the S-wave positions are taken to calculate the peak intervals instead of the R-wave. However, baseline wander and noise contained in the ECG signal have a deterrent effect on the accuracy with which the R-wave or the S-wave position is determined. In order to improve detection, the ECG signal is preprocessed using a Band-Pass Filter (BPF) which is composed of simple Cascaded Integrator Comb (CIC) filters. The American Heart Association (AHA) database was used in the simulation with the proposed algorithm. Accurate detection of the R-wave position was achieved in 99% of cases and efficient extraction of R-R intervals was possible.
URL: https://global.ieice.org/en_transactions/information/10.1587/e82-d_10_1425/_p
Copy
@ARTICLE{e82-d_10_1425,
author={Takashi KOHAMA, Shogo NAKAMURA, Hiroshi HOSHINO, },
journal={IEICE TRANSACTIONS on Information},
title={An Efficient R-R Interval Detection for ECG Monitoring System},
year={1999},
volume={E82-D},
number={10},
pages={1425-1432},
abstract={The recording of electrocardiogram (ECG) signals for the purpose of finding arrhythmias takes 24 hours. Generally speaking, changes in R-R intervals are used to detect arrhythmias. Our purpose is to develop an algorithm which efficiently detects R-R intervals. This system uses the R-wave position to calculate R-R intervals and then detects any arrhythmias. The algorithm searches for only the short time duration estimated from the most recent R-wave position in order to detect the next R-wave efficiently. We call this duration a WINDOW. A WINDOW is decided according to a proposed search algorithm so that the next R-wave can be expected in the WINDOW. In a case in which an S-wave is enhanced for some reason such as the manner in which the electrodes are installed in the system, the S-wave positions are taken to calculate the peak intervals instead of the R-wave. However, baseline wander and noise contained in the ECG signal have a deterrent effect on the accuracy with which the R-wave or the S-wave position is determined. In order to improve detection, the ECG signal is preprocessed using a Band-Pass Filter (BPF) which is composed of simple Cascaded Integrator Comb (CIC) filters. The American Heart Association (AHA) database was used in the simulation with the proposed algorithm. Accurate detection of the R-wave position was achieved in 99% of cases and efficient extraction of R-R intervals was possible.},
keywords={},
doi={},
ISSN={},
month={October},}
Copy
TY - JOUR
TI - An Efficient R-R Interval Detection for ECG Monitoring System
T2 - IEICE TRANSACTIONS on Information
SP - 1425
EP - 1432
AU - Takashi KOHAMA
AU - Shogo NAKAMURA
AU - Hiroshi HOSHINO
PY - 1999
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E82-D
IS - 10
JA - IEICE TRANSACTIONS on Information
Y1 - October 1999
AB - The recording of electrocardiogram (ECG) signals for the purpose of finding arrhythmias takes 24 hours. Generally speaking, changes in R-R intervals are used to detect arrhythmias. Our purpose is to develop an algorithm which efficiently detects R-R intervals. This system uses the R-wave position to calculate R-R intervals and then detects any arrhythmias. The algorithm searches for only the short time duration estimated from the most recent R-wave position in order to detect the next R-wave efficiently. We call this duration a WINDOW. A WINDOW is decided according to a proposed search algorithm so that the next R-wave can be expected in the WINDOW. In a case in which an S-wave is enhanced for some reason such as the manner in which the electrodes are installed in the system, the S-wave positions are taken to calculate the peak intervals instead of the R-wave. However, baseline wander and noise contained in the ECG signal have a deterrent effect on the accuracy with which the R-wave or the S-wave position is determined. In order to improve detection, the ECG signal is preprocessed using a Band-Pass Filter (BPF) which is composed of simple Cascaded Integrator Comb (CIC) filters. The American Heart Association (AHA) database was used in the simulation with the proposed algorithm. Accurate detection of the R-wave position was achieved in 99% of cases and efficient extraction of R-R intervals was possible.
ER -