Clustering is one of the most important topics in the field of knowledge discovery from databases. Especially, hierarchical clustering is useful since it gives a hierarchical view of a whole database and can be used to guide users in browsing a huge database. In many cases, clustering can be modeled as a graph partitioning problem. When an appropriate distance function between database objects is given, a database can be viewed as an edge-weighted complete graph, where vertices are database objects and weights of edges are distances between them. Then a process of MST (Minimal Spanning Tree) construction can be viewed as a process of a single-linkage agglomerative clustering process for database objects. In this paper, we propose an efficient MST construction method for a large complete metric graph, which is derived from a database with a metric distance function defined on it. Our method utilizes a metric index to reduce the number of distance calculations. The basic idea is to exclude those edges less probable to be a part of an MST by using the metric postulate. For this purpose, we introduce a new metric index named MetricMatrix. Experimental results show that our method can drastically reduce the number of distance calculations needed for MST construction in comparison with the classical method.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Masahiro ISHIKAWA, Kazutaka FURUSE, Hanxiong CHEN, Nobuo OHBO, "Minimal Spanning Tree Construction with MetricMatrix" in IEICE TRANSACTIONS on Information,
vol. E85-D, no. 2, pp. 362-372, February 2002, doi: .
Abstract: Clustering is one of the most important topics in the field of knowledge discovery from databases. Especially, hierarchical clustering is useful since it gives a hierarchical view of a whole database and can be used to guide users in browsing a huge database. In many cases, clustering can be modeled as a graph partitioning problem. When an appropriate distance function between database objects is given, a database can be viewed as an edge-weighted complete graph, where vertices are database objects and weights of edges are distances between them. Then a process of MST (Minimal Spanning Tree) construction can be viewed as a process of a single-linkage agglomerative clustering process for database objects. In this paper, we propose an efficient MST construction method for a large complete metric graph, which is derived from a database with a metric distance function defined on it. Our method utilizes a metric index to reduce the number of distance calculations. The basic idea is to exclude those edges less probable to be a part of an MST by using the metric postulate. For this purpose, we introduce a new metric index named MetricMatrix. Experimental results show that our method can drastically reduce the number of distance calculations needed for MST construction in comparison with the classical method.
URL: https://global.ieice.org/en_transactions/information/10.1587/e85-d_2_362/_p
Copy
@ARTICLE{e85-d_2_362,
author={Masahiro ISHIKAWA, Kazutaka FURUSE, Hanxiong CHEN, Nobuo OHBO, },
journal={IEICE TRANSACTIONS on Information},
title={Minimal Spanning Tree Construction with MetricMatrix},
year={2002},
volume={E85-D},
number={2},
pages={362-372},
abstract={Clustering is one of the most important topics in the field of knowledge discovery from databases. Especially, hierarchical clustering is useful since it gives a hierarchical view of a whole database and can be used to guide users in browsing a huge database. In many cases, clustering can be modeled as a graph partitioning problem. When an appropriate distance function between database objects is given, a database can be viewed as an edge-weighted complete graph, where vertices are database objects and weights of edges are distances between them. Then a process of MST (Minimal Spanning Tree) construction can be viewed as a process of a single-linkage agglomerative clustering process for database objects. In this paper, we propose an efficient MST construction method for a large complete metric graph, which is derived from a database with a metric distance function defined on it. Our method utilizes a metric index to reduce the number of distance calculations. The basic idea is to exclude those edges less probable to be a part of an MST by using the metric postulate. For this purpose, we introduce a new metric index named MetricMatrix. Experimental results show that our method can drastically reduce the number of distance calculations needed for MST construction in comparison with the classical method.},
keywords={},
doi={},
ISSN={},
month={February},}
Copy
TY - JOUR
TI - Minimal Spanning Tree Construction with MetricMatrix
T2 - IEICE TRANSACTIONS on Information
SP - 362
EP - 372
AU - Masahiro ISHIKAWA
AU - Kazutaka FURUSE
AU - Hanxiong CHEN
AU - Nobuo OHBO
PY - 2002
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E85-D
IS - 2
JA - IEICE TRANSACTIONS on Information
Y1 - February 2002
AB - Clustering is one of the most important topics in the field of knowledge discovery from databases. Especially, hierarchical clustering is useful since it gives a hierarchical view of a whole database and can be used to guide users in browsing a huge database. In many cases, clustering can be modeled as a graph partitioning problem. When an appropriate distance function between database objects is given, a database can be viewed as an edge-weighted complete graph, where vertices are database objects and weights of edges are distances between them. Then a process of MST (Minimal Spanning Tree) construction can be viewed as a process of a single-linkage agglomerative clustering process for database objects. In this paper, we propose an efficient MST construction method for a large complete metric graph, which is derived from a database with a metric distance function defined on it. Our method utilizes a metric index to reduce the number of distance calculations. The basic idea is to exclude those edges less probable to be a part of an MST by using the metric postulate. For this purpose, we introduce a new metric index named MetricMatrix. Experimental results show that our method can drastically reduce the number of distance calculations needed for MST construction in comparison with the classical method.
ER -