Efficient representations of a 3-D object shape and its texture data have attracted wide attention for the transmission of computer graphics data and for the development of multi-view real image rendering systems on computer networks. Polygonal mesh data, which consist of connectivity information, geometry data, and texture data, are often used for representing 3-D objects in many applications. This paper presents a wavelet coding technique for coding the geometry data structured on a triangular lattice plane obtained by structuring the connectivity of the polygonal mesh data. Since the structured geometry data have an arbitrarily-shaped support on the triangular lattice plane, a shape-adaptive wavelet transform was used to obtain the wavelet coefficients, whose number is identical to the number of original data, while preserving the self-similarity of the wavelet coefficients across subbands. In addition, the wavelet coding technique includes extensions of the zerotree entropy (ZTE) coding for taking into account the rate-distortion properties of the structured geometry data. The parent-children dependencies are defined as the set of wavelet coefficients from different bands that represent the same spatial region in the triangular lattice plane, and the wavelet coefficients in the spatial tree are optimally pruned based on the rate-distortion properties of the geometry data. Experiments in which proposed wavelet coding was applied to some sets of polygonal mesh data showed that the proposed wavelet coding achieved better coding efficiency than the Topologically Assisted Geometry Compression scheme adopted in the MPEG-4 standard.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Hiroyuki KANEKO, Koichi FUKUDA, Akira KAWANAKA, "Wavelet Coding of Structured Geometry Data on Triangular Lattice Plane Considering Rate-Distortion Properties" in IEICE TRANSACTIONS on Information,
vol. E87-D, no. 5, pp. 1238-1246, May 2004, doi: .
Abstract: Efficient representations of a 3-D object shape and its texture data have attracted wide attention for the transmission of computer graphics data and for the development of multi-view real image rendering systems on computer networks. Polygonal mesh data, which consist of connectivity information, geometry data, and texture data, are often used for representing 3-D objects in many applications. This paper presents a wavelet coding technique for coding the geometry data structured on a triangular lattice plane obtained by structuring the connectivity of the polygonal mesh data. Since the structured geometry data have an arbitrarily-shaped support on the triangular lattice plane, a shape-adaptive wavelet transform was used to obtain the wavelet coefficients, whose number is identical to the number of original data, while preserving the self-similarity of the wavelet coefficients across subbands. In addition, the wavelet coding technique includes extensions of the zerotree entropy (ZTE) coding for taking into account the rate-distortion properties of the structured geometry data. The parent-children dependencies are defined as the set of wavelet coefficients from different bands that represent the same spatial region in the triangular lattice plane, and the wavelet coefficients in the spatial tree are optimally pruned based on the rate-distortion properties of the geometry data. Experiments in which proposed wavelet coding was applied to some sets of polygonal mesh data showed that the proposed wavelet coding achieved better coding efficiency than the Topologically Assisted Geometry Compression scheme adopted in the MPEG-4 standard.
URL: https://global.ieice.org/en_transactions/information/10.1587/e87-d_5_1238/_p
Copy
@ARTICLE{e87-d_5_1238,
author={Hiroyuki KANEKO, Koichi FUKUDA, Akira KAWANAKA, },
journal={IEICE TRANSACTIONS on Information},
title={Wavelet Coding of Structured Geometry Data on Triangular Lattice Plane Considering Rate-Distortion Properties},
year={2004},
volume={E87-D},
number={5},
pages={1238-1246},
abstract={Efficient representations of a 3-D object shape and its texture data have attracted wide attention for the transmission of computer graphics data and for the development of multi-view real image rendering systems on computer networks. Polygonal mesh data, which consist of connectivity information, geometry data, and texture data, are often used for representing 3-D objects in many applications. This paper presents a wavelet coding technique for coding the geometry data structured on a triangular lattice plane obtained by structuring the connectivity of the polygonal mesh data. Since the structured geometry data have an arbitrarily-shaped support on the triangular lattice plane, a shape-adaptive wavelet transform was used to obtain the wavelet coefficients, whose number is identical to the number of original data, while preserving the self-similarity of the wavelet coefficients across subbands. In addition, the wavelet coding technique includes extensions of the zerotree entropy (ZTE) coding for taking into account the rate-distortion properties of the structured geometry data. The parent-children dependencies are defined as the set of wavelet coefficients from different bands that represent the same spatial region in the triangular lattice plane, and the wavelet coefficients in the spatial tree are optimally pruned based on the rate-distortion properties of the geometry data. Experiments in which proposed wavelet coding was applied to some sets of polygonal mesh data showed that the proposed wavelet coding achieved better coding efficiency than the Topologically Assisted Geometry Compression scheme adopted in the MPEG-4 standard.},
keywords={},
doi={},
ISSN={},
month={May},}
Copy
TY - JOUR
TI - Wavelet Coding of Structured Geometry Data on Triangular Lattice Plane Considering Rate-Distortion Properties
T2 - IEICE TRANSACTIONS on Information
SP - 1238
EP - 1246
AU - Hiroyuki KANEKO
AU - Koichi FUKUDA
AU - Akira KAWANAKA
PY - 2004
DO -
JO - IEICE TRANSACTIONS on Information
SN -
VL - E87-D
IS - 5
JA - IEICE TRANSACTIONS on Information
Y1 - May 2004
AB - Efficient representations of a 3-D object shape and its texture data have attracted wide attention for the transmission of computer graphics data and for the development of multi-view real image rendering systems on computer networks. Polygonal mesh data, which consist of connectivity information, geometry data, and texture data, are often used for representing 3-D objects in many applications. This paper presents a wavelet coding technique for coding the geometry data structured on a triangular lattice plane obtained by structuring the connectivity of the polygonal mesh data. Since the structured geometry data have an arbitrarily-shaped support on the triangular lattice plane, a shape-adaptive wavelet transform was used to obtain the wavelet coefficients, whose number is identical to the number of original data, while preserving the self-similarity of the wavelet coefficients across subbands. In addition, the wavelet coding technique includes extensions of the zerotree entropy (ZTE) coding for taking into account the rate-distortion properties of the structured geometry data. The parent-children dependencies are defined as the set of wavelet coefficients from different bands that represent the same spatial region in the triangular lattice plane, and the wavelet coefficients in the spatial tree are optimally pruned based on the rate-distortion properties of the geometry data. Experiments in which proposed wavelet coding was applied to some sets of polygonal mesh data showed that the proposed wavelet coding achieved better coding efficiency than the Topologically Assisted Geometry Compression scheme adopted in the MPEG-4 standard.
ER -