The search functionality is under construction.
The search functionality is under construction.

A Linear Time Algorithm for Finding a Minimum Spanning Tree with Non-Terminal Set VNT on Series-Parallel Graphs

Shin-ichi NAKAYAMA, Shigeru MASUYAMA

  • Full Text Views

    0

  • Cite this

Summary :

Given a graph G=(V,E), where V and E are vertex and edge sets of G, and a subset VNT of vertices called a non-terminal set, the minimum spanning tree with a non-terminal set VNT, denoted by MSTNT, is a connected and acyclic spanning subgraph of G that contains all vertices of V with the minimum weight where each vertex in a non-terminal set is not a leaf. On general graphs, the problem of finding an MSTNT of G is NP-hard. We show that if G is a series-parallel graph then finding an MSTNT of G is linearly solvable with respect to the number of vertices.

Publication
IEICE TRANSACTIONS on Information Vol.E102-D No.4 pp.826-835
Publication Date
2019/04/01
Publicized
2019/01/25
Online ISSN
1745-1361
DOI
10.1587/transinf.2018EDP7232
Type of Manuscript
PAPER
Category
Fundamentals of Information Systems

Authors

Shin-ichi NAKAYAMA
  Tokushima University
Shigeru MASUYAMA
  Tokyo University of Science

Keyword