Automatic recognition of finger gestures can be used for promotion of life quality. For example, a senior citizen can control the home appliance, call for help in emergency, or even communicate with others through simple finger gestures. Here, we focus on one-stroke finger gesture, which are intuitive to be remembered and performed. In this paper, we proposed and evaluated an accelerometer-based method for detecting the predefined one-stroke finger gestures from the data collected using a MEMS 3D accelerometer worn on the index finger. As alternative to the optoelectronic, sonic and ultrasonic approaches, the accelerometer-based method is featured as self-contained, cost-effective, and can be used in noisy or private space. A compact wireless sensing mote integrated with the accelerometer, called MagicRing, is developed to be worn on the finger for real data collection. A general definition on one-stroke gesture is given out, and 12 kinds of one-stroke finger gestures are selected from human daily activities. A set of features is extracted among the candidate feature set including both traditional features like standard deviation, energy, entropy, and frequency of acceleration and a new type of feature called relative feature. Both subject-independent and subject-dependent experiment methods were evaluated on three kinds of representative classifiers. In the subject-independent experiment among 20 subjects, the decision tree classifier shows the best performance recognizing the finger gestures with an average accuracy rate for 86.92 %. In the subject-dependent experiment, the nearest neighbor classifier got the highest accuracy rate for 97.55 %.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Lei JING, Yinghui ZHOU, Zixue CHENG, Junbo WANG, "A Recognition Method for One-Stroke Finger Gestures Using a MEMS 3D Accelerometer" in IEICE TRANSACTIONS on Information,
vol. E94-D, no. 5, pp. 1062-1072, May 2011, doi: 10.1587/transinf.E94.D.1062.
Abstract: Automatic recognition of finger gestures can be used for promotion of life quality. For example, a senior citizen can control the home appliance, call for help in emergency, or even communicate with others through simple finger gestures. Here, we focus on one-stroke finger gesture, which are intuitive to be remembered and performed. In this paper, we proposed and evaluated an accelerometer-based method for detecting the predefined one-stroke finger gestures from the data collected using a MEMS 3D accelerometer worn on the index finger. As alternative to the optoelectronic, sonic and ultrasonic approaches, the accelerometer-based method is featured as self-contained, cost-effective, and can be used in noisy or private space. A compact wireless sensing mote integrated with the accelerometer, called MagicRing, is developed to be worn on the finger for real data collection. A general definition on one-stroke gesture is given out, and 12 kinds of one-stroke finger gestures are selected from human daily activities. A set of features is extracted among the candidate feature set including both traditional features like standard deviation, energy, entropy, and frequency of acceleration and a new type of feature called relative feature. Both subject-independent and subject-dependent experiment methods were evaluated on three kinds of representative classifiers. In the subject-independent experiment among 20 subjects, the decision tree classifier shows the best performance recognizing the finger gestures with an average accuracy rate for 86.92 %. In the subject-dependent experiment, the nearest neighbor classifier got the highest accuracy rate for 97.55 %.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.E94.D.1062/_p
Copy
@ARTICLE{e94-d_5_1062,
author={Lei JING, Yinghui ZHOU, Zixue CHENG, Junbo WANG, },
journal={IEICE TRANSACTIONS on Information},
title={A Recognition Method for One-Stroke Finger Gestures Using a MEMS 3D Accelerometer},
year={2011},
volume={E94-D},
number={5},
pages={1062-1072},
abstract={Automatic recognition of finger gestures can be used for promotion of life quality. For example, a senior citizen can control the home appliance, call for help in emergency, or even communicate with others through simple finger gestures. Here, we focus on one-stroke finger gesture, which are intuitive to be remembered and performed. In this paper, we proposed and evaluated an accelerometer-based method for detecting the predefined one-stroke finger gestures from the data collected using a MEMS 3D accelerometer worn on the index finger. As alternative to the optoelectronic, sonic and ultrasonic approaches, the accelerometer-based method is featured as self-contained, cost-effective, and can be used in noisy or private space. A compact wireless sensing mote integrated with the accelerometer, called MagicRing, is developed to be worn on the finger for real data collection. A general definition on one-stroke gesture is given out, and 12 kinds of one-stroke finger gestures are selected from human daily activities. A set of features is extracted among the candidate feature set including both traditional features like standard deviation, energy, entropy, and frequency of acceleration and a new type of feature called relative feature. Both subject-independent and subject-dependent experiment methods were evaluated on three kinds of representative classifiers. In the subject-independent experiment among 20 subjects, the decision tree classifier shows the best performance recognizing the finger gestures with an average accuracy rate for 86.92 %. In the subject-dependent experiment, the nearest neighbor classifier got the highest accuracy rate for 97.55 %.},
keywords={},
doi={10.1587/transinf.E94.D.1062},
ISSN={1745-1361},
month={May},}
Copy
TY - JOUR
TI - A Recognition Method for One-Stroke Finger Gestures Using a MEMS 3D Accelerometer
T2 - IEICE TRANSACTIONS on Information
SP - 1062
EP - 1072
AU - Lei JING
AU - Yinghui ZHOU
AU - Zixue CHENG
AU - Junbo WANG
PY - 2011
DO - 10.1587/transinf.E94.D.1062
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E94-D
IS - 5
JA - IEICE TRANSACTIONS on Information
Y1 - May 2011
AB - Automatic recognition of finger gestures can be used for promotion of life quality. For example, a senior citizen can control the home appliance, call for help in emergency, or even communicate with others through simple finger gestures. Here, we focus on one-stroke finger gesture, which are intuitive to be remembered and performed. In this paper, we proposed and evaluated an accelerometer-based method for detecting the predefined one-stroke finger gestures from the data collected using a MEMS 3D accelerometer worn on the index finger. As alternative to the optoelectronic, sonic and ultrasonic approaches, the accelerometer-based method is featured as self-contained, cost-effective, and can be used in noisy or private space. A compact wireless sensing mote integrated with the accelerometer, called MagicRing, is developed to be worn on the finger for real data collection. A general definition on one-stroke gesture is given out, and 12 kinds of one-stroke finger gestures are selected from human daily activities. A set of features is extracted among the candidate feature set including both traditional features like standard deviation, energy, entropy, and frequency of acceleration and a new type of feature called relative feature. Both subject-independent and subject-dependent experiment methods were evaluated on three kinds of representative classifiers. In the subject-independent experiment among 20 subjects, the decision tree classifier shows the best performance recognizing the finger gestures with an average accuracy rate for 86.92 %. In the subject-dependent experiment, the nearest neighbor classifier got the highest accuracy rate for 97.55 %.
ER -