Modern microprocessors employ caches to bridge the great speed variance between a main memory and a central processing unit, but these caches consume a larger and larger proportion of the total power consumption. In fact, many values in a processor rarely need the full-bit dynamic range supported by a cache. The narrow-width value occupies a large portion of the cache access and storage. In view of these observations, this paper proposes an Adaptive Various-width Data Cache (AVDC) to reduce the power consumption in a cache, which exploits the popularity of narrow-width value stored in the cache. In AVDC, the data storage unit consists of three sub-arrays to store data of different widths. When high sub-arrays are not used, they are closed to save its dynamic and static power consumption through the modified high-bit SRAM cell. The main advantages of AVDC are: 1) Both the dynamic and static power consumption can be reduced. 2) Low power consumption is achieved by the modification of the data storage unit with less hardware modification. 3) We exploit the redundancy of narrow-width values instead of compressed values, thus cache access latency does not increase. Experimental results using SPEC 2000 benchmarks show that our proposed AVDC can reduce the power consumption, by 34.83% for dynamic power saving and by 42.87% for static power saving on average, compared with a cache without AVDC.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Jiongyao YE, Yu WAN, Takahiro WATANABE, "An Adaptive Various-Width Data Cache for Low Power Design" in IEICE TRANSACTIONS on Information,
vol. E94-D, no. 8, pp. 1539-1546, August 2011, doi: 10.1587/transinf.E94.D.1539.
Abstract: Modern microprocessors employ caches to bridge the great speed variance between a main memory and a central processing unit, but these caches consume a larger and larger proportion of the total power consumption. In fact, many values in a processor rarely need the full-bit dynamic range supported by a cache. The narrow-width value occupies a large portion of the cache access and storage. In view of these observations, this paper proposes an Adaptive Various-width Data Cache (AVDC) to reduce the power consumption in a cache, which exploits the popularity of narrow-width value stored in the cache. In AVDC, the data storage unit consists of three sub-arrays to store data of different widths. When high sub-arrays are not used, they are closed to save its dynamic and static power consumption through the modified high-bit SRAM cell. The main advantages of AVDC are: 1) Both the dynamic and static power consumption can be reduced. 2) Low power consumption is achieved by the modification of the data storage unit with less hardware modification. 3) We exploit the redundancy of narrow-width values instead of compressed values, thus cache access latency does not increase. Experimental results using SPEC 2000 benchmarks show that our proposed AVDC can reduce the power consumption, by 34.83% for dynamic power saving and by 42.87% for static power saving on average, compared with a cache without AVDC.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.E94.D.1539/_p
Copy
@ARTICLE{e94-d_8_1539,
author={Jiongyao YE, Yu WAN, Takahiro WATANABE, },
journal={IEICE TRANSACTIONS on Information},
title={An Adaptive Various-Width Data Cache for Low Power Design},
year={2011},
volume={E94-D},
number={8},
pages={1539-1546},
abstract={Modern microprocessors employ caches to bridge the great speed variance between a main memory and a central processing unit, but these caches consume a larger and larger proportion of the total power consumption. In fact, many values in a processor rarely need the full-bit dynamic range supported by a cache. The narrow-width value occupies a large portion of the cache access and storage. In view of these observations, this paper proposes an Adaptive Various-width Data Cache (AVDC) to reduce the power consumption in a cache, which exploits the popularity of narrow-width value stored in the cache. In AVDC, the data storage unit consists of three sub-arrays to store data of different widths. When high sub-arrays are not used, they are closed to save its dynamic and static power consumption through the modified high-bit SRAM cell. The main advantages of AVDC are: 1) Both the dynamic and static power consumption can be reduced. 2) Low power consumption is achieved by the modification of the data storage unit with less hardware modification. 3) We exploit the redundancy of narrow-width values instead of compressed values, thus cache access latency does not increase. Experimental results using SPEC 2000 benchmarks show that our proposed AVDC can reduce the power consumption, by 34.83% for dynamic power saving and by 42.87% for static power saving on average, compared with a cache without AVDC.},
keywords={},
doi={10.1587/transinf.E94.D.1539},
ISSN={1745-1361},
month={August},}
Copy
TY - JOUR
TI - An Adaptive Various-Width Data Cache for Low Power Design
T2 - IEICE TRANSACTIONS on Information
SP - 1539
EP - 1546
AU - Jiongyao YE
AU - Yu WAN
AU - Takahiro WATANABE
PY - 2011
DO - 10.1587/transinf.E94.D.1539
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E94-D
IS - 8
JA - IEICE TRANSACTIONS on Information
Y1 - August 2011
AB - Modern microprocessors employ caches to bridge the great speed variance between a main memory and a central processing unit, but these caches consume a larger and larger proportion of the total power consumption. In fact, many values in a processor rarely need the full-bit dynamic range supported by a cache. The narrow-width value occupies a large portion of the cache access and storage. In view of these observations, this paper proposes an Adaptive Various-width Data Cache (AVDC) to reduce the power consumption in a cache, which exploits the popularity of narrow-width value stored in the cache. In AVDC, the data storage unit consists of three sub-arrays to store data of different widths. When high sub-arrays are not used, they are closed to save its dynamic and static power consumption through the modified high-bit SRAM cell. The main advantages of AVDC are: 1) Both the dynamic and static power consumption can be reduced. 2) Low power consumption is achieved by the modification of the data storage unit with less hardware modification. 3) We exploit the redundancy of narrow-width values instead of compressed values, thus cache access latency does not increase. Experimental results using SPEC 2000 benchmarks show that our proposed AVDC can reduce the power consumption, by 34.83% for dynamic power saving and by 42.87% for static power saving on average, compared with a cache without AVDC.
ER -