In a convex drawing of a plane graph, all edges are drawn as straight-line segments without any edge-intersection and all facial cycles are drawn as convex polygons. In a convex grid drawing, all vertices are put on grid points. A plane graph G has a convex drawing if and only if G is internally triconnected, and an internally triconnected plane graph G has a convex grid drawing on an (n-1)×(n-1) grid if either G is triconnected or the triconnected component decomposition tree T(G) of G has two or three leaves, where n is the number of vertices in G. An internally triconnected plane graph G has a convex grid drawing on a 2n×2n grid if T(G) has exactly four leaves. In this paper, we show that an internally triconnected plane graph G has a convex grid drawing on a 6n×n2 grid if T(G) has exactly five leaves. We also present an algorithm to find such a drawing in linear time. This is the first algorithm that finds a convex grid drawing of such a plane graph G in a grid of polynomial size.
Kazuyuki MIURA
Fukushima University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Kazuyuki MIURA, "Convex Grid Drawings of Plane Graphs with Pentagonal Contours" in IEICE TRANSACTIONS on Information,
vol. E97-D, no. 3, pp. 413-420, March 2014, doi: 10.1587/transinf.E97.D.413.
Abstract: In a convex drawing of a plane graph, all edges are drawn as straight-line segments without any edge-intersection and all facial cycles are drawn as convex polygons. In a convex grid drawing, all vertices are put on grid points. A plane graph G has a convex drawing if and only if G is internally triconnected, and an internally triconnected plane graph G has a convex grid drawing on an (n-1)×(n-1) grid if either G is triconnected or the triconnected component decomposition tree T(G) of G has two or three leaves, where n is the number of vertices in G. An internally triconnected plane graph G has a convex grid drawing on a 2n×2n grid if T(G) has exactly four leaves. In this paper, we show that an internally triconnected plane graph G has a convex grid drawing on a 6n×n2 grid if T(G) has exactly five leaves. We also present an algorithm to find such a drawing in linear time. This is the first algorithm that finds a convex grid drawing of such a plane graph G in a grid of polynomial size.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.E97.D.413/_p
Copy
@ARTICLE{e97-d_3_413,
author={Kazuyuki MIURA, },
journal={IEICE TRANSACTIONS on Information},
title={Convex Grid Drawings of Plane Graphs with Pentagonal Contours},
year={2014},
volume={E97-D},
number={3},
pages={413-420},
abstract={In a convex drawing of a plane graph, all edges are drawn as straight-line segments without any edge-intersection and all facial cycles are drawn as convex polygons. In a convex grid drawing, all vertices are put on grid points. A plane graph G has a convex drawing if and only if G is internally triconnected, and an internally triconnected plane graph G has a convex grid drawing on an (n-1)×(n-1) grid if either G is triconnected or the triconnected component decomposition tree T(G) of G has two or three leaves, where n is the number of vertices in G. An internally triconnected plane graph G has a convex grid drawing on a 2n×2n grid if T(G) has exactly four leaves. In this paper, we show that an internally triconnected plane graph G has a convex grid drawing on a 6n×n2 grid if T(G) has exactly five leaves. We also present an algorithm to find such a drawing in linear time. This is the first algorithm that finds a convex grid drawing of such a plane graph G in a grid of polynomial size.},
keywords={},
doi={10.1587/transinf.E97.D.413},
ISSN={1745-1361},
month={March},}
Copy
TY - JOUR
TI - Convex Grid Drawings of Plane Graphs with Pentagonal Contours
T2 - IEICE TRANSACTIONS on Information
SP - 413
EP - 420
AU - Kazuyuki MIURA
PY - 2014
DO - 10.1587/transinf.E97.D.413
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E97-D
IS - 3
JA - IEICE TRANSACTIONS on Information
Y1 - March 2014
AB - In a convex drawing of a plane graph, all edges are drawn as straight-line segments without any edge-intersection and all facial cycles are drawn as convex polygons. In a convex grid drawing, all vertices are put on grid points. A plane graph G has a convex drawing if and only if G is internally triconnected, and an internally triconnected plane graph G has a convex grid drawing on an (n-1)×(n-1) grid if either G is triconnected or the triconnected component decomposition tree T(G) of G has two or three leaves, where n is the number of vertices in G. An internally triconnected plane graph G has a convex grid drawing on a 2n×2n grid if T(G) has exactly four leaves. In this paper, we show that an internally triconnected plane graph G has a convex grid drawing on a 6n×n2 grid if T(G) has exactly five leaves. We also present an algorithm to find such a drawing in linear time. This is the first algorithm that finds a convex grid drawing of such a plane graph G in a grid of polynomial size.
ER -