The search functionality is under construction.

Author Search Result

[Author] ChulHo WON(4hit)

1-4hit
  • CPLD Based Bi-Directional Wireless Capsule Endoscopes

    JyungHyun LEE  YeonKwan MOON  YoungHo YOON  HeeJoon PARK  ChulHo WON  HyunChul CHOI  JinHo CHO  

     
    LETTER-Biological Engineering

      Vol:
    E90-D No:3
      Page(s):
    694-697

    In the case of miniaturized telemetry capsules, such as a capsule endoscope that can acquire and transmit images from the intestines, the size and the power consumption of the module are restricted. In the capsule endoscopes, it is desirable that the control function can capacitate the sampling of digestive fluid and tissue, drug delivery, and locomotion. In this paper, the control function was embodied by bi-directional communication. A CPLD (complex programmable logic device) controller was designed and implemented for the bi-directional communication in capsule endoscope. The diameter of capsule was 12 mm and the length was 30 mm. The performance of implemented capsule was verified by in-vivo animal experiments.

  • Design and Fabrication of the Wireless Systems for Pressure Monitoring Systems in the Gastro-Intestinal Track

    YeonKwan MOON  JyungHyun LEE  HeeJoon PARK  JuGab LEE  JaeJong RYU  ChulHo WON  JungHee LEE  JinHo CHO  HyunChul CHOI  

     
    PAPER-Biological Engineering

      Vol:
    E89-D No:7
      Page(s):
    2294-2300

    Diseases in the gastro-intestinal track are becoming more prevalent. In order to diagnose a patient, the various signals of the digestive organ, such as temperature, pH, and pressure, can offer helpful information. The variation of a pressure signal of the gastro-intestinal track can offer information about digestive troubles or provide clues about diseases. This paper presents a wireless system for the pressure monitoring system, which includes a swallow-type pressure capsule and the external receiving system. A transmitter, a transmitting antenna (Helix), a receiver, and a receiving antenna (Loop) were designed and fabricated in consideration of the MPE, power consumption, system size, signal to noise ratio and modulation method. The wireless system designed and implemented for the pressure monitoring system was verified by in-vivo experiments. As a result, we found each organ has its own characteristic pressure fluctuation.

  • Fabrication of the Wireless Systems for Controlling Movements of the Electrical Stimulus Capsule in the Small Intestines

    YeonKwan MOON  JyungHyun LEE  HeeJoon PARK  JuGab LEE  JaeJong RYU  SangHyo WOO  MinKyu KIM  ChulHo WON  TaeWan KIM  JinHo CHO  HyunChul CHOI  

     
    PAPER-Biological Engineering

      Vol:
    E90-D No:2
      Page(s):
    586-593

    Diseases of the gastro-intestinal tract are becoming more prevalent. New techniques and devices, such as the wireless capsule endoscope and the telemetry capsule, that are able to measure the various signals of the digestive organs (temperature, pH, and pressure), have been developed for the observation of the digestive organs. In these capsule devices, there are no methods of moving and grasping them. In order to make a swift diagnosis and to give proper medication, it is necessary to control the moving speed of the capsule. This paper presents a wireless system for the control of movements of an electrical stimulus capsule. This includes an electrical stimulus capsule which can be swallowed and an external transmitting control system. A receiver, a receiving antenna (small multi-loop), a transmitter, and a transmitting antenna (monopole) were designed and fabricated taking into consideration the MPE, power consumption, system size, signal-to-noise ratio and the modulation method. The wireless system, which was designed and implemented for the control of movements of the electrical stimulus capsule, was verified by in-vitro experiments which were performed on the small intestines of a pig. As a result, we found that when the small intestines are contracted by electrical stimuli, the capsule can move to the opposite direction, which means that the capsule can go up or down in the small intestines.

  • Detection of Retinal Blood Vessels Based on Morphological Analysis with Multiscale Structure Elements and SVM Classification

    Pil Un KIM  Yunjung LEE  Sanghyo WOO  Chulho WON  Jin Ho CHO  Myoung Nam KIM  

     
    LETTER-Biological Engineering

      Vol:
    E94-D No:7
      Page(s):
    1519-1522

    Since retina blood vessels (RBV) are a major factor in ophthalmological diagnosis, it is essential to detect RBV from a fundus image. In this letter, we proposed the detection method of RBV using a morphological analysis and support vector machine classification. The proposed RBV detection method consists of three strategies: pre-processing, features extraction and classification. In pre-processing, noises were reduced and RBV were enhanced by anisotropic diffusion filtering and illumination equalization. Features were extracted by using the image intensity and morphology of RBV. And a support vector machine (SVM) classification algorithm was used to detect RBV. The proposed RBV detection method was simulated and validated by using the DRIVE database. The averages of accuracy and TPR are 0.94 and 0.78, respectively. Moreover, by comparison, we confirmed that the proposed RBV detection method detected RBV better than the recent RBV detections methods.