The search functionality is under construction.

Author Search Result

[Author] Conggai LI(11hit)

1-11hit
  • CsiNet-Plus Model with Truncation and Noise on CSI Feedback Open Access

    Feng LIU  Xuecheng HE  Conggai LI  Yanli XU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E103-A No:1
      Page(s):
    376-381

    For the frequency-division-duplex (FDD)-based massive multiple-input multiple-output (MIMO) systems, channel state information (CSI) feedback plays a critical role. Although deep learning has been used to compress the CSI feedback, some issues like truncation and noise still need further investigation. Facing these practical concerns, we propose an improved model (called CsiNet-Plus), which includes a truncation process and a channel noise process. Simulation results demonstrate that the CsiNet-Plus outperforms the existing CsiNet. The performance interchangeability between truncated decimal digits and the signal-to-noise-ratio helps support flexible configuration.

  • Energy Efficiency Optimization for MISO-NOMA SWIPT System with Heterogeneous QoS Requirements

    Feng LIU  Xianlong CHENG  Conggai LI  Yanli XU  

     
    LETTER-Mobile Information Network and Personal Communications

      Pubricized:
    2022/08/18
      Vol:
    E106-A No:2
      Page(s):
    159-163

    This letter solves the energy efficiency optimization problem for the simultaneous wireless information and power transfer (SWIPT) systems with non-orthogonal multiple access (NOMA), multiple input single output (MISO) and power-splitting structures, where each user may have different individual quality of service (QoS) requirements about information and energy. Nonlinear energy harvesting model is used. Alternate optimization approach is adopted to find the solution, which shows a fast convergence behavior. Simulation results show the proposed scheme has higher energy efficiency than existing dual-layer iteration and throughput maximization methods.

  • QoS-Constrained Robust Beamforming Design for MIMO Interference Channels with Bounded CSI Errors Open Access

    Conggai LI  Xuan GENG  Feng LIU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:10
      Page(s):
    1426-1430

    Constrained by quality-of-service (QoS), a robust transceiver design is proposed for multiple-input multiple-output (MIMO) interference channels with imperfect channel state information (CSI) under bounded error model. The QoS measurement is represented as the signal-to-interference-plus-noise ratio (SINR) for each user with single data stream. The problem is formulated as sum power minimization to reduce the total power consumption for energy efficiency. In a centralized manner, alternating optimization is performed at each node. For fixed transmitters, closed-form expression for the receive beamforming vectors is deduced. And for fixed receivers, the sum-power minimization problem is recast as a semi-definite program form with linear matrix inequalities constraints. Simulation results demonstrate the convergence and robustness of the proposed algorithm, which is important for practical applications in future wireless networks.

  • Optimal Frequency Scheduling for Cascaded Wireless Networks with Omni-Directional Full-Duplex Relays

    Feng LIU  Yanli XU  Conggai LI  Xuan GENG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E100-A No:12
      Page(s):
    3071-3074

    The effect of the hidden terminal (HT) over multi-hop cascaded wireless networks with the omni-directional full-duplex relays will cause data collision. We allocate the frequency band among different hops in an orthogonal way based on link grouping strategy to avoid this HT problem. In order to maximize the achievable rate, an optimal frequency allocation scheme is proposed by boundary alignment. Performance analyses are provided and further validated by the simulation results.

  • Polar Coding Aided by Adaptive Channel Equalization for Underwater Acoustic Communication

    Feng LIU  Qianqian WU  Conggai LI  Fangjiong CHEN  Yanli XU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2022/07/01
      Vol:
    E106-A No:1
      Page(s):
    83-87

    To improve the performance of underwater acoustic communications, this letter proposes a polar coding scheme with adaptive channel equalization, which can reduce the amount of feedback information. Furthermore, a hybrid automatic repeat request (HARQ) mechanism is provided to mitigate the impact of estimation errors. Simulation results show that the proposed scheme outperforms the turbo equalization in bit error rate. Computational complexity analysis is also provided for comparison.

  • A General Perfect Cyclic Interference Alignment by Propagation Delay for Arbitrary X Channels with Two Receivers Open Access

    Conggai LI  Feng LIU  Shuchao JIANG  Yanli XU  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1580-1585

    Interference alignment (IA) in temporal domain is important in the case of single-antenna vehicle communications. In this paper, perfect cyclic IA based on propagation delay is extended to the K×2 X channels with two receivers and arbitrary transmitters K≥2, which achieves the maximal multiplexing gain by obtaining the theoretical degree of freedom of 2K/(K+1). We deduce the alignment and separability conditions, and propose a general scheme which is flexible in setting the index of time-slot for IA at the receiver side. Furthermore, the feasibility of the proposed scheme in the two-/three- Euclidean space is analyzed and demonstrated.

  • Max-Min Fairness for MIMO Interference Channels under CSI Mismatch

    Feng LIU  Conggai LI  Chen HE  Xuan GENG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E100-A No:6
      Page(s):
    1349-1352

    This letter considers the robust transceiver design for multiple-input multiple-output interference channels under channel state information mismatch. According to alternating schemes, an adaptive algorithm is proposed to solve the minimum SINR maximization problem. Simulation results show the convergence and the effectiveness of the proposed algorithm.

  • On the Degrees of Freedom of a Propagation-Delay Based Multicast X Channel with Two Transmitters and Arbitrary Receivers

    Conggai LI  Qian GAN  Feng LIU  Yanli XU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/08/23
      Vol:
    E106-B No:3
      Page(s):
    267-274

    Compared with the unicast scenario, X channels with multicast messaging can support richer transmission scenarios. The transmission efficiency of the wireless multicast X channel is an important and open problem. This article studies the degrees of freedom of a propagation-delay based multicast X channel with two transmitters and arbitrary receivers, where each transmitter sends K different messages and each receiver desires K - 1 of them from each transmitter. The cyclic polynomial approach is adopted for modeling and analysis. The DoF upper bound is analyzed and shown to be unreachable. Then a suboptimal scheme with one extra time-slot cycle is proposed, which uses the cyclic interference alignment method and achieves a DoF of K - 1. Finally, the feasibility conditions in the Euclidean space are derived and the potential applications are demonstrated for underwater acoustic and terrestrial radio communications.

  • A Computer-Aided Solution to Find All Feasible Schemes of Cyclic Interference Alignment for Propagation-Delay Based X Channels

    Conggai LI  Feng LIU  Xin ZHOU  Yanli XU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2022/11/02
      Vol:
    E106-A No:5
      Page(s):
    868-870

    To obtain a full picture of potential applications for propagation-delay based X channels, it is important to obtain all feasible schemes of cyclic interference alignment including the encoder, channel instance, and decoder. However, when the dimension goes larger, theoretical analysis about this issue will become tedious and even impossible. In this letter, we propose a computer-aided solution by searching the channel space and the scheduling space, which can find all feasible schemes in details. Examples are given for some typical X channels. Computational complexity is further analyzed.

  • L0-Norm Based Adaptive Equalization with PMSER Criterion for Underwater Acoustic Communications

    Tian FANG  Feng LIU  Conggai LI  Fangjiong CHEN  Yanli XU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2022/12/06
      Vol:
    E106-A No:6
      Page(s):
    947-951

    Underwater acoustic channels (UWA) are usually sparse, which can be exploited for adaptive equalization to improve the system performance. For the shallow UWA channels, based on the proportional minimum symbol error rate (PMSER) criterion, the adaptive equalization framework requires the sparsity selection. Since the sparsity of the L0 norm is stronger than that of the L1, we choose it to achieve better convergence. However, because the L0 norm leads to NP-hard problems, it is difficult to find an efficient solution. In order to solve this problem, we choose the Gaussian function to approximate the L0 norm. Simulation results show that the proposed scheme obtains better performance than the L1 based counterpart.

  • Robust THP Transceiver for MIMO Interference Channel with Reduced Complexity

    Xuan GENG  Conggai LI  Feng LIU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E100-A No:11
      Page(s):
    2534-2538

    This letter considers the robust Tomlinson-Harashima Precoding(THP) transceiver design for Multiple-Input Multiple-Output (MIMO) interference channel (IC). Assuming bounded channel state information (CSI) error, we deal with the optimization for minimizing the worst case per-user mean square error (MSE) and sum MSE. We present an approximate approach to derive the upper bound of the constraint leading to less semidefinite. Then the alternate approach is adopted to update the receiver matrix by solving second-order-cone programming (SOCP), and update the transmitter matrix and feedback matrix by solving semidefinite program (SDP), respectively. Simulation results show that the proposed method achieves similar performance of the S-procedure method, whereas the computation complexity is reduced significantly, especially for the system with large number of transmit antennas.