The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Der-Wei YANG(1hit)

1-1hit
  • Low-Complexity Memory Access Architectures for Quasi-Cyclic LDPC Decoders

    Ming-Der SHIEH  Shih-Hao FANG  Shing-Chung TANG  Der-Wei YANG  

     
    PAPER-Computer System

      Vol:
    E95-D No:2
      Page(s):
    549-557

    Partially parallel decoding architectures are widely used in the design of low-density parity-check (LDPC) decoders, especially for quasi-cyclic (QC) LDPC codes. To comply with the code structure of parity-check matrices of QC-LDPC codes, many small memory blocks are conventionally employed in this architecture. The total memory area usually dominates the area requirement of LDPC decoders. This paper proposes a low-complexity memory access architecture that merges small memory blocks into memory groups to relax the effect of peripherals in small memory blocks. A simple but efficient algorithm is also presented to handle the additional delay elements introduced in the memory merging method. Experiment results on a rate-1/2 parity-check matrix defined in the IEEE 802.16e standard show that the LDPC decoder designed using the proposed memory access architecture has the lowest area complexity among related studies. Compared to a design with the same specifications, the decoder implemented using the proposed architecture requires 33% fewer gates and is more power-efficient. The proposed new memory access architecture is thus suitable for the design of low-complexity LDPC decoders.