1-8hit |
Xuedong YANG Masayuki KAWAMATA Tatsuo HIGUCHI
This letter proposes a Perfect-Reconstruction (PR) encryption scheme based on a PR QMF bank. Using the proposed scheme, signals can be encrypted and reconstructed perfectly by using two Periodically Time-Varying (PTV) digital filters respectively. Also we find that the proposed scheme has a "good" encryption effect and compares favorably with frequency scramble in the aspects of computation complexity, PR property, and degree of security.
Xudong YANG Qingji ZENG Xuan LUO
We develop a non-concurrent single-failure occurring model, a restoration scheme based on adaptively-decided sub-lightpath rerouting algorithm is then proposed, which aims to achieve better service guaranty with less network status information.
Xuanxuan TANG Wendong YANG Yueming CAI Weiwei YANG Yuyang ZHANG Xiaoli SUN Yufeng QIAN
This paper studies the secrecy throughput performance of the three-node wireless-powered networks and proposes two secure transmission schemes, namely the half-duplex maximal ratio combining (HD&MRC) scheme and the full-duplex jamming scheme based on time switching simultaneous wireless information and power transfer (FDJ&TS-SWIPT). The closed-form expressions of the secrecy throughput are derived, and intuitive comparison of the two schemes is provided. It is illustrated that the HD&MRC scheme only applies to the low and medium signal-to-noise ratio (SNR) regime. On the contrary, the suitable SNR regime of the FDJ&TS-SWIPT is much wider. It is depicted that FDJ&TS-SWIPT combing with current passive self-interference cancellation (SIC) algorithm outperforms HD&MRC significantly, especially when a medium or high transmit SNR is provided. Numerical simulations are conducted for verifying the validity of the analysis.
Sang-Youl LEE Seung-Dong YANG Jae-Sub OH Ho-Jin YUN Kwang-Seok JEONG Yu-Mi KIM Hi-Deok LEE Ga-Won LEE
In this paper, we fabricated a gate-all-around bandgap-engineered (BE) silicon-oxide-nitride-oxide-silicon (SONOS) and silicon-oxide-high-k-oxide-silicon (SOHOS) flash memory device with a vertical silicon pillar type structure for a potential solution to scaling down. Silicon nitride (Si3N4) and hafnium oxide (HfO2) were used as trapping layers in the SONOS and SOHOS devices, respectively. The BE-SOHOS device has better electrical characteristics such as a lower threshold voltage (VTH) of 0.16 V, a higher gm.max of 0.593 µA/V and on/off current ratio of 5.76108, than the BE-SONOS device. The memory characteristics of the BE-SONOS device, such as program/erase speed (P/E speed), endurance, and data retention, were compared with those of the BE-SOHOS device. The measured data show that the BE-SONOS device has good memory characteristics, such as program speed and data retention. Compared with the BE-SONOS device, the erase speed is enhanced about five times in BE-SOHOS, while the program speed and data retention characteristic are slightly worse, which can be explained via the many interface traps between the trapping layer and the tunneling oxide.
Lei WANG Xinrong GUAN Yueming CAI Weiwei YANG Wendong YANG
This work investigates the physical layer security for three cooperative automatic-repeat-request (CARQ) protocols, including the decode-and-forward (DF) CARQ, opportunistic DF (ODF) CARQ, and the distributed space-time code (DSTC) CARQ. Assuming that there is no instantaneous channel state information (CSI) of legitimate users' channel and eavesdropper's channel at the transmitter, the connection outage performance and secrecy outage performance are derived to evaluate the reliability and security of each CARQ protocol. Then, we redefine the concept of the secrecy throughput to evaluate the overall efficiency of the system in terms of maintaining both reliable and secure transmission. Furthermore, through an asymptotic analysis in the high signal-to-noise ratio (SNR) regime, the direct relationship between reliability and security is established via the reliability-security tradeoff (RST). Numerical results verify the analysis and show the efficiency of the CARQ protocols in terms of the improvement on the secrecy throughput. More interestingly, increasing the transmit SNR and the maximum number of transmissions of the ARQ protocols may not achieve a security performance gain. In addition, the RST results underline the importance of determining how to balance the reliability vs. security, and show the superiority of ODF CARQ in terms of RST.
Xudong YANG Ling GAO Yan LI Jipeng XU Jie ZHENG Hai WANG Quanli GAO
With the popularity and development of Location-Based Services (LBS), location privacy-preservation has become a hot research topic in recent years, especially research on k-anonymity. Although previous studies have done a lot of work on anonymity-based privacy protection, there are still several challenges far from being perfectly solved, such as the negative impact on the security of anonymity by the semantic information, which from anonymous locations and query content. To address these semantic challenges, we propose a dual privacy preservation scheme based on the architecture of multi-anonymizers in this paper. Different from existing approaches, our method enhanced location privacy by integrating location anonymity and the encrypted query. First, the query encryption method that combines improved shamir mechanism and multi-anonymizers is proposed to enhance query safety. Second, we design an anonymity method that enhances semantic location privacy through anonymous locations that satisfy personal semantic diversity and replace sensitive semantic locations. Finally, the experiment on the real dataset shows that our algorithms provide much better privacy and use than previous solutions.
Yong WANG Xiaoran DUAN Xiaodong YANG Yiquan ZHANG Xiaosong ZHANG
Geosocial networking allows users to interact with respect to their current locations, which enables a group of users to determine where to meet. This calls for techniques that support processing of Multiple-user Location-based Keyword (MULK) queries, which return a set of Point-of-Interests (POIs) that are 'close' to the locations of the users in a group and can provide them with potential options at the lowest expense (e.g., minimizing travel distance). In this paper, we formalize the MULK query and propose a dynamic programming-based algorithm to find the optimal result set. Further, we design two approximation algorithms to improve MULK query processing efficiency. The experimental evaluations show that our solutions are feasible and efficient under various parameter settings.
Dong YANG Paul DIXON Sadaoki FURUI
This paper proposes a new hybrid method for machine transliteration. Our method is based on combining a newly proposed two-step conditional random field (CRF) method and the well-known joint source channel model (JSCM). The contributions of this paper are as follows: (1) A two-step CRF model for machine transliteration is proposed. The first CRF segments a character string of an input word into chunks and the second one converts each chunk into a character in the target language. (2) A joint optimization method of the two-step CRF model and a fast decoding algorithm are also proposed. Our experiments show that the joint optimization of the two-step CRF model works as well as or even better than the JSCM, and the fast decoding algorithm significantly decreases the decoding time. (3) A rapid development method based on a weighted finite state transducer (WFST) framework for the JSCM is proposed. (4) The combination of the proposed two-step CRF model and JSCM outperforms the state-of-the-art result in terms of top-1 accuracy.