The search functionality is under construction.

Author Search Result

[Author] Donghui LI(8hit)

1-8hit
  • QoS Analysis for Service Composition by Human and Web Services Open Access

    Donghui LIN  Toru ISHIDA  Yohei MURAKAMI  Masahiro TANAKA  

     
    PAPER

      Vol:
    E97-D No:4
      Page(s):
    762-769

    The availability of more and more Web services provides great varieties for users to design service processes. However, there are situations that services or service processes cannot meet users' requirements in functional QoS dimensions (e.g., translation quality in a machine translation service). In those cases, composing Web services and human tasks is expected to be a possible alternative solution. However, analysis of such practical efforts were rarely reported in previous researches, most of which focus on the technology of embedding human tasks in software environments. Therefore, this study aims at analyzing the effects of composing Web services and human activities using a case study in the domain of language service with large scale experiments. From the experiments and analysis, we find out that (1) service implementation variety can be greatly increased by composing Web services and human activities for satisfying users' QoS requirements; (2) functional QoS of a Web service can be significantly improved by inducing human activities with limited cost and execution time provided certain quality of human activities; and (3) multiple QoS attributes of a composite service are affected in different ways with different quality of human activities.

  • Diabetes Noninvasive Recognition via Improved Capsule Network

    Cunlei WANG  Donghui LI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/05/06
      Vol:
    E105-D No:8
      Page(s):
    1464-1471

    Noninvasive recognition is an important trend in diabetes recognition. Unfortunately, the accuracy obtained from the conventional noninvasive recognition methods is low. This paper proposes a novel Diabetes Noninvasive Recognition method via the plantar pressure image and improved Capsule Network (DNR-CapsNet). The input of the proposed method is a plantar pressure image, and the output is the recognition result: healthy or possibly diabetes. The ResNet18 is used as the backbone of the convolutional layers to convert pixel intensities to local features in the proposed DNR-CapsNet. Then, the PrimaryCaps layer, SecondaryCaps layer, and DiabetesCaps layer are developed to achieve the diabetes recognition. The semantic fusion and locality-constrained dynamic routing are also developed to further improve the recognition accuracy in our method. The experimental results indicate that the proposed method has a better performance on diabetes noninvasive recognition than the state-of-the-art methods.

  • Deep Coalitional Q-Learning for Dynamic Coalition Formation in Edge Computing

    Shiyao DING  Donghui LIN  

     
    PAPER

      Pubricized:
    2021/12/14
      Vol:
    E105-D No:5
      Page(s):
    864-872

    With the high development of computation requirements in Internet of Things, resource-limited edge servers usually require to cooperate to perform the tasks. Most related studies usually assume a static cooperation approach which might not suit the dynamic environment of edge computing. In this paper, we consider a dynamic cooperation approach by guiding edge servers to form coalitions dynamically. It raises two issues: 1) how to guide them to optimally form coalitions and 2) how to cope with the dynamic feature where server statuses dynamically change as the tasks are performed. The coalitional Markov decision process (CMDP) model proposed in our previous work can handle these issues well. However, its basic solution, coalitional Q-learning, cannot handle the large scale problem when the task number is large in edge computing. Our response is to propose a novel algorithm called deep coalitional Q-learning (DCQL) to solve it. To sum up, we first formulate the dynamic cooperation problem of edge servers as a CMDP: each edge server is regarded as an agent and the dynamic process is modeled as a MDP where the agents observe the current state to formulate several coalitions. Each coalition takes an action to impact the environment which correspondingly transfers to the next state to repeat the above process. Then, we propose DCQL which includes a deep neural network and so can well cope with large scale problem. DCQL can guide the edge servers to form coalitions dynamically with the target of optimizing some goal. Furthermore, we run experiments to verify our proposed algorithm's effectiveness in different settings.

  • Multi-Agent Reinforcement Learning for Cooperative Task Offloading in Distributed Edge Cloud Computing

    Shiyao DING  Donghui LIN  

     
    PAPER

      Pubricized:
    2021/12/28
      Vol:
    E105-D No:5
      Page(s):
    936-945

    Distributed edge cloud computing is an important computation infrastructure for Internet of Things (IoT) and its task offloading problem has attracted much attention recently. Most existing work on task offloading in distributed edge cloud computing usually assumes that each self-interested user owns one edge server and chooses whether to execute its tasks locally or to offload the tasks to cloud servers. The goal of each edge server is to maximize its own interest like low delay cost, which corresponds to a non-cooperative setting. However, with the strong development of smart IoT communities such as smart hospital and smart factory, all edge and cloud servers can belong to one organization like a technology company. This corresponds to a cooperative setting where the goal of the organization is to maximize the team interest in the overall edge cloud computing system. In this paper, we consider a new problem called cooperative task offloading where all edge servers try to cooperate to make the entire edge cloud computing system achieve good performance such as low delay cost and low energy cost. However, this problem is hard to solve due to two issues: 1) each edge server status dynamically changes and task arrival is uncertain; 2) each edge server can observe only its own status, which makes it hard to optimize team interest as global information is unavailable. For solving these issues, we formulate the problem as a decentralized partially observable Markov decision process (Dec-POMDP) which can well handle the dynamic features under partial observations. Then, we apply a multi-agent reinforcement learning algorithm called value decomposition network (VDN) and propose a VDN-based task offloading algorithm (VDN-TO) to solve the problem. Specifically, the motivation is that we use a team value function to evaluate the team interest, which is then divided into individual value functions for each edge server. Then, each edge server updates its individual value function in the direction that can maximize the team interest. Finally, we choose a part of a real dataset to evaluate our algorithm and the results show the effectiveness of our algorithm in a comparison with some other existing methods.

  • Coordination of Local Process Views in Interorganizational Business Process

    Donghui LIN  Toru ISHIDA  

     
    PAPER

      Vol:
    E97-D No:5
      Page(s):
    1119-1126

    Collaborative business has been increasingly developing with the environment of globalization and advanced information technologies. In a collaboration environment with multiple organizations, participants from different organizations always have different views about modeling the overall business process due to different knowledge and cultural backgrounds. Moreover, flexible support, privacy preservation and process reuse are important issues that should be considered in business process management across organizational boundaries. This paper presents a novel approach of modeling interorganizational business process for collaboration. Our approach allows for modeling loosely coupled interorganizational business process considering different views of organizations. In the proposed model, organizations have their own local process views of modeling business process instead of sharing pre-defined global processes. During process cooperation, local process of an organization can be invisible to other organizations. Further, we propose the coordination mechanisms for different local process views to detect incompatibilities among organizations. We illustrate our proposed approach by a case study of interorganizational software development collaboration.

  • Interorganizational Workflow Execution Based on Process Agents and ECA Rules

    Donghui LIN  Huanye SHENG  Toru ISHIDA  

     
    PAPER

      Vol:
    E90-D No:9
      Page(s):
    1335-1342

    Flexibility, adaptation and distribution have been regarded as major challenges of modern interorganizational workflow. To address these issues, this paper proposes an interorganizational workflow execution framework based on process agents and ECA rules. In our framework, an interorganizational workflow is modeled as a multiagent system with a process agent for each organization. The whole execution is divided into two parts: the intra-execution, which means execution within a same organization, and the inter-execution, which represents interaction between organizations. For intra-execution, we use the method of transforming the graph-based local workflow into block-based workflow to design general ECA rules. ECA rules are used to control internal state transitions and process agents are used to control external state transitions of tasks in the local workflows. Inter-execution is realized by process agent interaction protocols. The proposed approach can provide flexible execution of interorganizational workflow with distributed organizational autonomy and adaptation. A case study of offshore software development is illustrated for the proposed approach.

  • Privacy-Aware Best-Balanced Multilingual Communication

    Mondheera PITUXCOOSUVARN  Takao NAKAGUCHI  Donghui LIN  Toru ISHIDA  

     
    PAPER

      Pubricized:
    2020/03/18
      Vol:
    E103-D No:6
      Page(s):
    1288-1296

    In machine translation (MT) mediated human-to-human communication, it is not an easy task to select the languages and translation services to be used as the users have various language backgrounds and skills. Our previous work introduced the best-balanced machine translation mechanism (BBMT) to automatically select the languages and translation services so as to equalize the language barriers of participants and to guarantee their equal opportunities in joining conversations. To assign proper languages to be used, however, the mechanism needs information of the participants' language skills, typically participants' language test scores. Since it is important to keep test score confidential, as well as other sensitive information, this paper introduces agents, which exchange encrypted information, and secure computation to ensure that agents can select the languages and translation services without destroying privacy. Our contribution is to introduce a multi-agent system with secure computation that can protect the privacy of users in multilingual communication. To our best knowledge, it is the first attempt to introduce multi-agent systems and secure computing to this area. The key idea is to model interactions among agents who deal with user's sensitive data, and to distribute calculation tasks to three different types of agents, together with data encryption, so no agent is able to access or recover participants' score.

  • A Data Augmentation Method for Fault Localization with Fault Propagation Context and VAE

    Zhuo ZHANG  Donghui LI  Lei XIA  Ya LI  Xiankai MENG  

     
    LETTER-Software Engineering

      Pubricized:
    2023/10/25
      Vol:
    E107-D No:2
      Page(s):
    234-238

    With the growing complexity and scale of software, detecting and repairing errant behaviors at an early stage are critical to reduce the cost of software development. In the practice of fault localization, a typical process usually includes three steps: execution of input domain test cases, construction of model domain test vectors and suspiciousness evaluation. The effectiveness of model domain test vectors is significant for locating the faulty code. However, test vectors with failing labels usually account for a small portion, which inevitably degrades the effectiveness of fault localization. In this paper, we propose a data augmentation method PVaug by using fault propagation context and variational autoencoder (VAE). Our empirical results on 14 programs illustrate that PVaug has promoted the effectiveness of fault localization.