The search functionality is under construction.

Author Search Result

[Author] Duy Trong NGO(2hit)

1-2hit
  • Precoding Design for Han-Kobayashi's Signal Splitting in MIMO Interference Networks

    Ho Huu Minh TAM  Hoang Duong TUAN  Duy Trong NGO  Ha Hoang NGUYEN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/12/14
      Vol:
    E100-B No:6
      Page(s):
    1010-1016

    For a multiuser multi-input multi-output (MU-MIMO) multicell network, the Han-Kobayashi strategy aims to improve the achievable rate region by splitting the data information intended to a serviced user (UE) into a common message and a private message. The common message is decodable by this UE and another UE from an adjacent cell so that the corresponding intercell interference is cancelled off. This work aims to design optimal precoders for both common and private messages to maximize the network sum-rate, which is a highly nonlinear and nonsmooth function in the precoder matrix variables. Existing approaches are unable to address this difficult problem. In this paper, we develop a successive convex quadratic programming algorithm that generates a sequence of improved points. We prove that the proposed algorithm converges to at least a local optimum of the considered problem. Numerical results confirm the advantages of our proposed algorithm over conventional coordinated precoding approaches where the intercell interference is treated as noise.

  • Energy-Efficient Full-Duplex Enabled Cloud Radio Access Networks

    Tung Thanh VU  Duy Trong NGO  Minh N. DAO  Quang-Thang DUONG  Minoru OKADA  Hung NGUYEN-LE  Richard H. MIDDLETON  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/07/18
      Vol:
    E103-B No:1
      Page(s):
    71-78

    This paper studies the joint optimization of precoding, transmit power and data rate allocation for energy-efficient full-duplex (FD) cloud radio access networks (C-RANs). A new nonconvex problem is formulated, where the ratio of total sum rate to total power consumption is maximized, subject to the maximum transmit powers of remote radio heads and uplink users. An iterative algorithm based on successive convex programming is proposed with guaranteed convergence to the Karush-Kuhn-Tucker solutions of the formulated problem. Numerical examples confirm the effectiveness of the proposed algorithm and show that the FD C-RANs can achieve a large gain over half-duplex C-RANs in terms of energy efficiency at low self-interference power levels.