1-2hit |
Haoran LUO Tengfei SHAO Shenglei LI Reiko HISHIYAMA
Makeup transfer is the process of applying the makeup style from one picture (reference) to another (source), allowing for the modification of characters’ makeup styles. To meet the diverse makeup needs of individuals or samples, the makeup transfer framework should accurately handle various makeup degrees, ranging from subtle to bold, and exhibit intelligence in adapting to the source makeup. This paper introduces a “3-level” adaptive makeup transfer framework, addressing facial makeup through two sub-tasks: 1. Makeup adaptation, utilizing feature descriptors and eyelid curve algorithms to classify 135 organ-level face shapes; 2. Makeup transfer, achieved by learning the reference picture from three branches (color, highlight, pattern) and applying it to the source picture. The proposed framework, termed “Face Shape Adaptive Makeup Transfer” (FSAMT), demonstrates superior results in makeup transfer output quality, as confirmed by experimental results.
Shenglei LI Haoran LUO Tengfei SHAO Reiko HISHIYAMA
Automatic detection and recognition systems have numerous applications in smart city implementation. Despite the accuracy and widespread use of device-based and optical methods, several issues remain. These include device limitations, environmental limitations, and privacy concerns. The FMWC sensor can overcome these issues to detect and track moving people accurately in commercial environments. However, single-chip mmWave sensor solutions might struggle to recognize standing and sitting people due to the necessary static removal module. To address these issues, we propose a real-time indoor people detection and tracking fusion system using mmWave radar and cameras. The proposed fusion system approaches an overall detection accuracy of 93.8% with a median position error of 1.7 m in a commercial environment. Compared to our single-chip mmWave radar solution addressing an overall accuracy of 83.5% for walking people, it performs better in detecting individual stillness, which may feed the security needs in retail. This system visualizes customer information, including trajectories and the number of people. It helps commercial environments prevent crowds during the COVID-19 pandemic and analyze customer visiting patterns for efficient management and marketing. Powered by an IoT platform, the system can be deployed in the cloud for easy large-scale implementation.