1-3hit |
Kenichi IGA, Haruhisa SODA Tomoji TERAKADO Satoshi SHIMIZU
This paper presents a surface emitting injection laser with improved short cavity structure operating at 1.30 µm (77 K) of wavelength. The selective etching technique has been applied to take out the InP substrate in order to reduce the absorption loss and resultant cavity length was 7 µm. The threshold was as low as 50 mA at 77 K. The device operated up to 140 K with one single longitudinal mode and small wavelength change (0.64 /degree). The near-field diameter was 9 µm and the far-field angle (FWHM) was 9 degrees. The polarization was linear.
Toshio HIGASHI Tsuyoshi YAMAMOTO Tsutomu ISHIKAWA Takuya FUJII Haruhisa SODA Minoru YAMADA
We have measured the temperature dependence of the gain characteristics in 1.3-µm AlGaInAs/InP strained multiple-quantum-well (MQW) semiconductor lasers using Hakki-Paoli method. By measuring the temperature dependences of the peak gain value and the gain peak wavelength, we evaluated the temperature dependences of the threshold current and the oscillation wavelength, respectively. The small temperature dependence of the threshold current in AlGaInAs/InP lasers is caused by the small temperature dependence of the transparency current density, which is represented by the characteristic temperature TJtr of 116 K. In AlGaInAs/InP high T0 lasers, the temperature dependence of the oscillation wavelength is slightly larger than that in GaInAsP/InP lasers because of the larger temperature dependence of bandgap wavelength 0.55 nm/K.
Toshio HIGASHI Tsuyoshi YAMAMOTO Tsutomu ISHIKAWA Takuya FUJII Haruhisa SODA Minoru YAMADA
We have measured the temperature dependence of the gain characteristics in 1.3-µm AlGaInAs/InP strained multiple-quantum-well (MQW) semiconductor lasers using Hakki-Paoli method. By measuring the temperature dependences of the peak gain value and the gain peak wavelength, we evaluated the temperature dependences of the threshold current and the oscillation wavelength, respectively. The small temperature dependence of the threshold current in AlGaInAs/InP lasers is caused by the small temperature dependence of the transparency current density, which is represented by the characteristic temperature TJtr of 116 K. In AlGaInAs/InP high T0 lasers, the temperature dependence of the oscillation wavelength is slightly larger than that in GaInAsP/InP lasers because of the larger temperature dependence of bandgap wavelength 0.55 nm/K.