The search functionality is under construction.

Author Search Result

[Author] Hideyuki KAWAKITA(2hit)

1-2hit
  • A Symbolic Analysis Method Using Signal Block Diagrams and Its Application to Bias Synthesis of Analog Circuits

    Hideyuki KAWAKITA  Seijiro MORIYAMA  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E77-A No:3
      Page(s):
    502-509

    In this paper, an efficient and robust circuit parameter determination method suitable for analog circuit synthesis is presented. The method uses block diagram representation of circuits as implicit design knowledge. Circuit parameter determination is carried out by propagating known values along signal flow in the block diagram. The circuit parameter determination using signal propagation performs successfully when unknown circuit parameters can be solved in one way. However, when the block diagram involves implicit calculation, the propagation stops before all unknown parameters are determined. In order to cope with this problem, we introduced a method that employs a symbolic analysis technique combined with a numerical method. When the propagation of known values stops, one of unknown signals is selected, a unique symbol is assigned to the selected signal, and the signal propagation is restarted. This operation is repeated until there is no unknown signal. When the symbol propagation reaches the signal where the signal value is already set, one nonlinear equation for the signal is obtained by equating both signal values. It can be solved by a numerical method, such as Newton's method. The parameter determination method using procedural description is superior to the optimization based method because it is straightforward to incorporate design knowhow in the description. However, it is burdensome for designers to develop design procedures for each circuit to be synthesized. Because the block diagram based calculation method can be used as subroutine calls during the design procedure development, it simplifies the design procedural description and lowers the burden of designers. The method was applied to the element value determination of bias circuits to demonstrate its effectiveness.

  • High-Frequency Device-Modeling Techniques for RF-CMOS Circuits

    Ryuichi FUJIMOTO  Osamu WATANABE  Fumie FUJII  Hideyuki KAWAKITA  Hiroshi TANIMOTO  

     
    PAPER

      Vol:
    E84-A No:2
      Page(s):
    520-528

    Simple and scalable device-modeling techniques for inductors and capacitors are described. All model parameters are calculated from geometric parameters of the device, process parameters of the technology, and a substrate resistance parameter. Modeling techniques for other devices, such as resistors, varactor diodes, pads and MOSFETs, are also described. Some simulation results using the proposed device-modeling techniques are compared with measured results and they indicate adequacy of the proposed device-modeling techniques.