The search functionality is under construction.

Author Search Result

[Author] Hirokazu TAKENOUCHI(5hit)

1-5hit
  • Differential Processing Using an Arrayed-Waveguide Grating

    Hirokazu TAKENOUCHI  Hiroyuki TSUDA  Chikara AMANO  Takashi GOH  Katsunari OKAMOTO  Takashi KUROKAWA  

     
    PAPER-Optical Passive Devices and Modules

      Vol:
    E82-B No:8
      Page(s):
    1252-1258

    This paper reports on time-space conversion-based differential processing of optical signals using a high-resolution arrayed-waveguide grating (AWG) and a spatial filter at a wavelength of 1.55 µm. We clarify the advantages of the AWG device and show where it is applicable. In order to reduce loss at the spatial filter, we propose a new phase-only filter that functions as a differential filter. The difference between the exact differential filter and the proposed phase-only filter is calculated theoretically. We confirm experimentally that the optical pulse can be differentiated by the proposed filter. For application of differential processing, we also proposed a phase modulation to amplitude modulation (PM-AM) conversion and demonstrated the PM-AM conversion at 10 Gbit/s signals using a PSK-non-return-to-zero (NRZ) format.

  • High-Speed Optical Packet Processing Technologies for Optical Packet-Switched Networks

    Hirokazu TAKENOUCHI  Tatsushi NAKAHARA  Kiyoto TAKAHATA  Ryo TAKAHASHI  Hiroyuki SUZUKI  

     
    INVITED PAPER

      Vol:
    E88-C No:3
      Page(s):
    286-294

    Asynchronous optical packet switching (OPS) is a promising solution to support the continuous growth of transmission capacity demand. It has been, however, quite difficult to implement key functions needed at the node of such networks with all-optical approaches. We have proposed a new optoelectronic system composed of a packet-by-packet optical clock-pulse generator (OCG), an all-optical serial-to-parallel converter (SPC), a photonic parallel-to-serial converter (PSC), and CMOS circuitry. The system makes it possible to carry out various required functions such as buffering (random access memory), optical packet compression/decompression, and optical label swapping for high-speed asynchronous optical packets.

  • PPLN-Based Low-Noise In-Line Phase Sensitive Amplifier with Highly Sensitive Carrier-Recovery System

    Koji ENBUTSU  Takeshi UMEKI  Osamu TADANAGA  Masaki ASOBE  Hirokazu TAKENOUCHI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E99-B No:8
      Page(s):
    1727-1733

    We propose a highly sensitive carrier-recovery system for in-line amplification for binary phase shift keying (BPSK) signals in a periodically poled LiNbO3 based phase sensitive amplifier (PSA). We applied a discrete two-stage second harmonic generation/difference frequency generation (SHG/DFG) parametric conversion scheme to enhance the sensitivity of the carrier recovery. Owing to this two-stage SHG/DFG scheme, the conversion efficiency of the seed light for the injection locking needed for the pump generation can be improved compared to that of the cascaded SHG/DFG scheme. The new discrete scheme might also prevent the SNR degradation of the seed light caused by the ASE from the booster EDFA compared with the previous system that used the cascaded scheme. This novel carrier-recovery system exhibits high sensitivity with the SNR of over 7.8dB of the seed light, while tapped signal power is as low as -50dBm, which is low enough for injection locking. The new in-line PSA with this carrier-recovery system exhibits high gain of over 11dB. Since we successfully obtained the high gain property, we tried multistage amplification taking into account practical use and achieved it with both a high gain of 20dB and a noise figure that is almost as low as the standard quantum limit of a PSA.

  • 40-Gbit/s 16-bit Burst Optical Packet Generator Based on Photonic Parallel-to-Serial Conversion

    Hirokazu TAKENOUCHI  Kiyoto TAKAHATA  Tatsushi NAKAHARA  Ryo TAKAHASHI  Hiroyuki SUZUKI  

     
    LETTER-Optoelectronics

      Vol:
    E87-C No:5
      Page(s):
    825-827

    We propose a burst optical packet generator based on a novel photonic parallel-to-serial conversion scheme, and demonstrate 40-Gbit/s 16-bit optical packet generation from 16-ch parallel low-voltage TTL data streams. It consists of electrical 4:1 parallel-to-serial converters that employ InP metal-semiconductor-metal photodetectors, and an optical time-domain multiplexer with electroabsorption modulators. The proposed optical packet generator is suitable for burst optical packet generation and overcomes the electronic bandwidth limitation, which is prerequisite for achieving high-speed photonic packet switched networks. In addition, it can be driven by simple low-cost low-power CMOS logic circuits, and is compact and extensible in terms of the number of input channels due to the effective combination of electrical and optical multiplexing.

  • Differential Processing Using an Arrayed-Waveguide Grating

    Hirokazu TAKENOUCHI  Hiroyuki TSUDA  Chikara AMANO  Takashi GOH  Katsunari OKAMOTO  Takashi KUROKAWA  

     
    PAPER-Optical Passive Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1518-1524

    This paper reports on time-space conversion-based differential processing of optical signals using a high-resolution arrayed-waveguide grating (AWG) and a spatial filter at a wavelength of 1.55 µm. We clarify the advantages of the AWG device and show where it is applicable. In order to reduce loss at the spatial filter, we propose a new phase-only filter that functions as a differential filter. The difference between the exact differential filter and the proposed phase-only filter is calculated theoretically. We confirm experimentally that the optical pulse can be differentiated by the proposed filter. For application of differential processing, we also proposed a phase modulation to amplitude modulation (PM-AM) conversion and demonstrated the PM-AM conversion at 10 Gbit/s signals using a PSK-non-return-to-zero (NRZ) format.