The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Chikara AMANO(4hit)

1-4hit
  • Differential Processing Using an Arrayed-Waveguide Grating

    Hirokazu TAKENOUCHI  Hiroyuki TSUDA  Chikara AMANO  Takashi GOH  Katsunari OKAMOTO  Takashi KUROKAWA  

     
    PAPER-Optical Passive Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1518-1524

    This paper reports on time-space conversion-based differential processing of optical signals using a high-resolution arrayed-waveguide grating (AWG) and a spatial filter at a wavelength of 1.55 µm. We clarify the advantages of the AWG device and show where it is applicable. In order to reduce loss at the spatial filter, we propose a new phase-only filter that functions as a differential filter. The difference between the exact differential filter and the proposed phase-only filter is calculated theoretically. We confirm experimentally that the optical pulse can be differentiated by the proposed filter. For application of differential processing, we also proposed a phase modulation to amplitude modulation (PM-AM) conversion and demonstrated the PM-AM conversion at 10 Gbit/s signals using a PSK-non-return-to-zero (NRZ) format.

  • Differential Processing Using an Arrayed-Waveguide Grating

    Hirokazu TAKENOUCHI  Hiroyuki TSUDA  Chikara AMANO  Takashi GOH  Katsunari OKAMOTO  Takashi KUROKAWA  

     
    PAPER-Optical Passive Devices and Modules

      Vol:
    E82-B No:8
      Page(s):
    1252-1258

    This paper reports on time-space conversion-based differential processing of optical signals using a high-resolution arrayed-waveguide grating (AWG) and a spatial filter at a wavelength of 1.55 µm. We clarify the advantages of the AWG device and show where it is applicable. In order to reduce loss at the spatial filter, we propose a new phase-only filter that functions as a differential filter. The difference between the exact differential filter and the proposed phase-only filter is calculated theoretically. We confirm experimentally that the optical pulse can be differentiated by the proposed filter. For application of differential processing, we also proposed a phase modulation to amplitude modulation (PM-AM) conversion and demonstrated the PM-AM conversion at 10 Gbit/s signals using a PSK-non-return-to-zero (NRZ) format.

  • Liquid Crystal Polarization Controller Arrays on Planar Lightwave Circuits

    Katsuhiko HIRABAYASHI  Chikara AMANO  

     
    INVITED PAPER-OECC Awarded Paper

      Vol:
    E86-C No:5
      Page(s):
    753-761

    We have formed simple polarization-controller arrays by inserting liquid crystal (LC) in trenches cut across planar lightwave circuits (PLCs). We fabricated LC layers for use as polarization controllers on PLCs in two ways; in one, the ultra-thin layer of LC is held in a cell that is inserted into a trench on the PLC while in the other, the trench is directly filled with the LC. The ultra-thin LC cell can change the phase of 1.55-µm light from 0 to 3π while the LC filling can change the phase of light at the same wavelength from 0 to 12π below 5Vrms. Two former parallel-aligned ultra-thin LC cells, where the directions of alignment of the liquid crystals are rotated by 45 relative to each other, are capable of converting light with an arbitrary input polarization to TE or TM polarization. Ultra-thin cells of twisted nematic LC can switch the polarization between TE and TM modes with an extinction ratio of -15dB. The array we fabricated had a pitch of 1 mm and 5 elements, but an array with more than 100 elements and a pitch below 125µm will easily be possible by using finely patterned transparent electrodes. We have also applied our techniques to the fabrication of LC-based variable optical attenuators (VOA) on the PLC.

  • Polarization Control of VCSEL on (311)B Substrate and Its Effects on Transmission Characteristics

    Toshiaki KAGAWA  Osamu TADANAGA  Hiroyuki UENOHARA  Kouta TATENO  Chikara AMANO  

     
    PAPER-Device

      Vol:
    E84-C No:3
      Page(s):
    351-357

    VCSEL output light polarization was controlled by fabricating devices on (311) substrate. Stability was improved by introducing compressive strain to the quantum wells in the active layer. In experiments, the power penalty due to polarization-dependent loss in the transmission line was negligible for both VCSELs with unstrained and strained quantum well active layers on (311)B substrate. The sensitivity at 2.5 Gbps was improved in a device with a strained active layer because the intensity noise due to the polarization instability was reduced. These characteristics are discussed and compared to calculated results.