The search functionality is under construction.

Author Search Result

[Author] Hiroshi TSUTSUI(11hit)

1-11hit
  • A Cost-Effective Selective TMR for Coarse-Grained Reconfigurable Architectures Based on DFG-Level Vulnerability Analysis

    Takashi IMAGAWA  Hiroshi TSUTSUI  Hiroyuki OCHI  Takashi SATO  

     
    PAPER

      Vol:
    E96-C No:4
      Page(s):
    454-462

    This paper proposes a novel method to determine a priority for applying selective triple modular redundancy (selective TMR) against single event upset (SEU) to achieve cost-effective reliable implementation of application circuits onto coarse-grained reconfigurable architectures (CGRAs). The priority is determined by an estimation of the vulnerability of each node in the data flow graph (DFG) of the application circuit. The estimation is based on a weighted sum of the node parameters which characterize impact of the SEU in the node on the output data. This method does not require time-consuming placement-and-routing processes, as well as extensive fault simulations for various triplicating patterns, which allows us to identify the set of nodes to be triplicated for minimizing the vulnerability under given area constraint at the early stage of design flow. Therefore, the proposed method enables us efficient design space exploration of reliability-oriented CGRAs and their applications.

  • Efficient Memory Organization Framework for JPEG2000 Entropy Codec

    Hiroki SUGANO  Takahiko MASUZAKI  Hiroshi TSUTSUI  Takao ONOYE  Hiroyuki OCHI  Yukihiro NAKAMURA  

     
    PAPER-Realization

      Vol:
    E92-A No:8
      Page(s):
    1970-1977

    The encoding/decoding process of JPEG2000 requires much more computation power than that of conventional JPEG mainly due to the complexity of the entropy encoding/decoding. Thus usually multiple entropy codec hardware modules are implemented in parallel to process the entropy encoding/decoding. This module, however, requests many small-size memories to store intermediate data, and when multiple modules are implemented on a chip, employment of the large number of SRAMs increases difficulty of whole chip layout. In this paper, an efficient memory organization framework for the entropy encoding/decoding module is proposed, in which not only existing memory organizations but also our proposed novel memory organization methods are attempted to expand the design space to be explored. As a result, the efficient memory organization for a target process technology can be explored.

  • LUT-Array-Based PLD and Synthesis Approach Based on Sum of Generalized Complex Terms Expression

    Hiroshi TSUTSUI  Akihiko TOMITA  Shigenori SUGIMOTO  Kazuhisa SAKAI  Tomonori IZUMI  Takao ONOYE  Yukihiro NAKAMURA  

     
    PAPER-FPGA Systhesis

      Vol:
    E84-A No:11
      Page(s):
    2681-2689

    In this paper, a design of Programmable Logic Device (PLD) and a synthesis approach are proposed. Our PLD is derived from traditional Programmable Logic Array (PLA). The key extension is that programmable AND devices in PLA is replaced by Look-Up Tables (LUTs). A series of cascaded LUTs in the array can generate more complex terms, which we call generalized complex terms (GCTs), than product terms. In order to utilize the capability, a synthesis approach to map a given function into the array is also proposed. Our approach generates a expression of the sum of GCTs aiming to minimize the number of terms. A number of experimental results demonstrate that the number of terms for our PLD generated by our approach is 14.9% fewer than that by an existing approach. We design our PLD based on a fundamental unit named nGCT cell which can be used as LUTs in multiple sizes or random access memories. Implementation of the PLD based on a fundamental unit named nGCT cell which can be used as LUTs or random access memories is also described.

  • An Architecture for Real-Time Retinex-Based Image Enhancement and Haze Removal and Its FPGA Implementation Open Access

    Dabwitso KASAUKA  Kenta SUGIYAMA  Hiroshi TSUTSUI  Hiroyuki OKUHATA  Yoshikazu MIYANAGA  

     
    PAPER

      Vol:
    E102-A No:6
      Page(s):
    775-782

    In recent years, much research interest has developed in image enhancement and haze removal techniques. With increasing demand for real time enhancement and haze removal, the need for efficient architecture incorporating both haze removal and enhancement is necessary. In this paper, we propose an architecture supporting both real-time Retinex-based image enhancement and haze removal, using a single module. Efficiently leveraging the similarity between Retinex-based image enhancement and haze removal algorithms, we have successfully proposed an architecture supporting both using a single module. The implementation results reveal that just 1% logic circuits overhead is required to support Retinex-based image enhancement in single mode and haze removal based on Retinex model. This reduction in computation complexity by using a single module reduces the processing and memory implications especially in mobile consumer electronics, as opposed to implementing them individually using different modules. Furthermore, we utilize image enhancement for transmission map estimation instead of soft matting, thereby avoiding further computation complexity which would affect our goal of realizing high frame-rate real time processing. Our FPGA implementation, operating at an optimum frequency of 125MHz with 5.67M total block memory bit size, supports WUXGA (1,920×1,200) 60fps as well as 1080p60 color input. Our proposed design is competitive with existing state-of-the-art designs. Our proposal is tailored to enhance consumer electronic such as on-board cameras, active surveillance intrusion detection systems, autonomous cars, mobile streaming systems and robotics with low processing and memory requirements.

  • Bayesian Estimation of Multi-Trap RTN Parameters Using Markov Chain Monte Carlo Method

    Hiromitsu AWANO  Hiroshi TSUTSUI  Hiroyuki OCHI  Takashi SATO  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E95-A No:12
      Page(s):
    2272-2283

    Random telegraph noise (RTN) is a phenomenon that is considered to limit the reliability and performance of circuits using advanced devices. The time constants of carrier capture and emission and the associated change in the threshold voltage are important parameters commonly included in various models, but their extraction from time-domain observations has been a difficult task. In this study, we propose a statistical method for simultaneously estimating interrelated parameters: the time constants and magnitude of the threshold voltage shift. Our method is based on a graphical network representation, and the parameters are estimated using the Markov chain Monte Carlo method. Experimental application of the proposed method to synthetic and measured time-domain RTN signals was successful. The proposed method can handle interrelated parameters of multiple traps and thereby contributes to the construction of more accurate RTN models.

  • Parallel Acceleration Scheme for Monte Carlo Based SSTA Using Generalized STA Processing Element

    Hiroshi YUASA  Hiroshi TSUTSUI  Hiroyuki OCHI  Takashi SATO  

     
    PAPER

      Vol:
    E96-C No:4
      Page(s):
    473-481

    We propose a novel acceleration scheme for Monte Carlo based statistical static timing analysis (MC-SSTA). MC-SSTA, which repeatedly executes ordinary STA using a set of randomly generated gate delay samples, is widely accepted as an accuracy reference. A large number of random samples, however, should be processed to obtain accurate delay distributions, and software implementation of MC-SSTA, therefore, takes an impractically long processing time. In our approach, a generalized hardware module, the STA processing element (STA-PE), is used for the delay evaluation of a logic gate, and netlist-specific information is delivered in the form of instructions from an SRAM. Multiple STA-PEs can be implemented for parallel processing, while a larger netlist can be handled if only a larger SRAM area is available. The proposed scheme is successfully implemented on Altera's Arria II GX EP2AGX125EF35C4 device in which 26 STA-PEs and a 624-port Mersenne Twister-based random number generator run in parallel at a 116 MHz clock rate. A speedup of far more than10 is achieved compared to conventional methods including GPU implementation.

  • Stochastic Pedestrian Tracking Based on 6-Stick Skeleton Model

    Ryusuke MIYAMOTO  Jumpei ASHIDA  Hiroshi TSUTSUI  Yukihiro NAKAMURA  

     
    PAPER-Image

      Vol:
    E90-A No:3
      Page(s):
    606-617

    A novel pedestrian tracking scheme based on a particle filter is proposed, which adopts a skeleton model of a pedestrian for a state space model and distance transformed images for likelihood computation. The 6-stick skeleton model used in the proposed approach is very distinctive in representing a pedestrian simply but effectively. By the experiment using the real sequences provided by PETS, it is shown that the target pedestrian is tracked adequately by the proposed approach with a simple silhouette extraction method which consists of only background subtraction, even if the tracking target moves so complicatedly and is often so cluttered by other obstacles that the pedestrian can not be tracked by the conventional methods. Moreover, it is demonstrated that the proposed scheme can track the multiple targets in the complex case that their trajectories intersect.

  • WiFi Fingerprint Based Indoor Positioning Systems Using Estimated Reference Locations

    Myat Hsu AUNG  Hiroshi TSUTSUI  Yoshikazu MIYANAGA  

     
    PAPER-WiFi

      Vol:
    E103-A No:12
      Page(s):
    1483-1493

    In this paper, we propose a WiFi-based indoor positioning system using a fingerprint method, whose database is constructed with estimated reference locations. The reference locations and their information, called data sets in this paper, are obtained by moving reference devices at a constant speed while gathering information of available access points (APs). In this approach, the reference locations can be estimated using the velocity without any precise reference location information. Therefore, the cost of database construction can be dramatically reduced. However, each data set includes some errors due to such as the fluctuation of received signal strength indicator (RSSI) values, the device-specific WiFi sensitivities, the AP installations, and removals. In this paper, we propose a method to merge data sets to construct a consistent database suppressing such undesired effects. The proposed approach assumes that the intervals of reference locations in the database are constant and that the fingerprint for each reference location is calculated from multiple data sets. Through experimental results, we reveal that our approach can achieve an accuracy of 80%. We also show a detailed discussion on the results related parameters in the proposed approach.

  • A Variability-Aware Energy-Minimization Strategy for Subthreshold Circuits

    Junya KAWASHIMA  Hiroshi TSUTSUI  Hiroyuki OCHI  Takashi SATO  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E95-A No:12
      Page(s):
    2242-2250

    We investigate a design strategy for subthreshold circuits focusing on energy-consumption minimization and yield maximization under process variations. The design strategy is based on the following findings related to the operation of low-power CMOS circuits: (1) The minimum operation voltage (VDDmin) of a circuit is dominated by flip-flops (FFs), and VDDmin of an FF can be improved by upsizing a few key transistors, (2) VDDmin of an FF is stochastically modeled by a log-normal distribution, (3) VDDmin of a large circuit can be efficiently estimated by using the above model, which eliminates extensive Monte Carlo simulations, and (4) improving VDDmin may substantially contribute to decreasing energy consumption. The effectiveness of the proposed design strategy has been verified through circuit simulations on various circuits, which clearly show the design tradeoff between voltage scaling and transistor sizing.

  • FOREWORD Open Access

    Shingo YOSHIZAWA  Hiroshi TSUTSUI  

     
    FOREWORD

      Vol:
    E106-A No:3
      Page(s):
    454-455
  • FOREWORD

    Hiroshi Tsutsui  Mitsuji Muneyasu  

     
    FOREWORD

      Vol:
    E100-A No:11
      Page(s):
    2219-2220