The search functionality is under construction.

Author Search Result

[Author] Hirotsugu SATO(7hit)

1-7hit
  • Long-Term Reliability of Plastic Ferrules for Single-Mode Fiber-Optic Connectors

    Yoshito SHUTO  Shuichi YANAGI  Masayoshi OHNO  Hirotsugu SATO  Shin SUMIDA  Shunichi TOHNO  

     
    PAPER-Optoelectronics

      Vol:
    E84-C No:7
      Page(s):
    1002-1009

    We examined the creep properties and hazard rates of plastic ferrules to ensure the long-term reliablity of optical fiber connections. The endface deformation ΔL had to be smaller than 3 µm to keep the insertion-loss and return-loss fluctuation to acceptable levels in the worst case of random concatenation of similarly deformed plastic ferrules. From the fluctuation data, we estimated the time-to-failure tf at which the ΔL value became 3 µm. We estimated the acceleration parameters, median lifetimes ξ, and hazard rates λ by using tf values based on Weibull statistics. The ξ values decreased rapidly with increasing temperature and relative humidity. We found we could expect small λ values of < 0.1 FIT (FIT=10-9/hour) and of 1 FIT for 20 years in a normal atmosphere (25C/50%RH) and in a more severe case of 25C/90%RH, respectively.

  • Precisely Molded Plastic V-Grooved Alignment Parts for Multi-Port Optical Devices

    Michiyuki AMANO  Yasuaki TAMURA  Fumiaki HANAWA  Hirotsugu SATO  Norio TAKATO  Shun-ichi TOHNO  

     
    PAPER-Optical Passive Devices and Modules

      Vol:
    E82-B No:8
      Page(s):
    1259-1264

    Precise plastic V-grooved alignment parts for connecting single-mode optical fiber arrays to multi-port optical devices were successfully molded with a thermosetting resin by using a highly productive injection molding technique. The molded parts are two types of V-grooved blocks that are compatible with the size of optical devices having eight or twelve optical ports. Their dimensional accuracy must be better than 1 µm over the whole length of the V-grooves for efficient optical coupling. This strict requirement was satisfied using precisely processed molding tools with a specially chosen resin under optimum molding conditions. The feasibility of the optical alignment parts was assured by an evaluation of their loss characteristics and reliability in coupling single-mode fibers to 18 power splitters, where the average optical loss was 0.2 dB and the change in loss was less than 0.2 dB under a temperature cycling test and also under a damp heat test. These results show that plastic molded parts can be used for precise coupling of single-mode optical devices, and will lead to a breakthrough in innovation in the field of optical packaging.

  • Precisely Molded Plastic V-Grooved Alignment Parts for Multi-Port Optical Devices

    Michiyuki AMANO  Yasuaki TAMURA  Fumiaki HANAWA  Hirotsugu SATO  Norio TAKATO  Shun-ichi TOHNO  

     
    PAPER-Optical Passive Devices and Modules

      Vol:
    E82-C No:8
      Page(s):
    1525-1530

    Precise plastic V-grooved alignment parts for connecting single-mode optical fiber arrays to multi-port optical devices were successfully molded with a thermosetting resin by using a highly productive injection molding technique. The molded parts are two types of V-grooved blocks that are compatible with the size of optical devices having eight or twelve optical ports. Their dimensional accuracy must be better than 1 µm over the whole length of the V-grooves for efficient optical coupling. This strict requirement was satisfied using precisely processed molding tools with a specially chosen resin under optimum molding conditions. The feasibility of the optical alignment parts was assured by an evaluation of their loss characteristics and reliability in coupling single-mode fibers to 18 power splitters, where the average optical loss was 0.2 dB and the change in loss was less than 0.2 dB under a temperature cycling test and also under a damp heat test. These results show that plastic molded parts can be used for precise coupling of single-mode optical devices, and will lead to a breakthrough in innovation in the field of optical packaging.

  • Static Fatigue Reliability of Plastic Split Alignment Sleeve for Single-Mode Optical Connection

    Yoshito SHUTO  Hirotsugu SATO  Shun-ichi TOHNO  

     
    PAPER

      Vol:
    E82-C No:1
      Page(s):
    66-71

    The static fatigue parameters of plastic sleeves are determined by dynamic fatigue and destructive tests. The failure probability and lifetime of the plastic sleeve are estimated by using these parameters. No failure is expected for 20 years if the plastic sleeve is used in a normal atmosphere (23, 60%RH) and hot water (50).

  • Long-Term Reliability of Plastic Split Alignment Sleeves for Single-Mode Fiber-Optic Connectors

    Yoshito SHUTO  Hirotsugu SATO  Shuichi YANAGI  Masayoshi OHNO  Shin SUMIDA  Shunichi TOHNO  

     
    PAPER-Optoelectronics

      Vol:
    E84-C No:1
      Page(s):
    96-101

    We examined the creep properties and hazard rates of plastic split alignment sleeves to ensure the long-term reliablity of optical fiber connections. It required a gauge retention force Fr of more than 200 gf to suppress the fluctuation in the insertion loss of a plastic sleeve. From the fluctuation data, we estimated the time-to-failure tf at which the Fr value became 200 gf. We estimated the acceleration parameters, median lifetimes ξ, and hazard rates λ by using the tf values based on the Weibull statistics. The ξ values decreased rapidly with increasing temperature and relative humidity. Small λ values of < 0.01 FITs and of 1 FITs were expected for 20 years in a normal atmosphere (25C/50%RH) and in a more severe case of 25C/90%RH or 45C/50%RH.

  • Injection Molded Fiber-Optic Connector Components for Single-Mode Fiber Applications

    Hirotsugu SATO  Shuichi YANAGI  Yoshito SHUTO  Masayoshi OHNO  Shun-ichi TOHNO  

     
    PAPER-Opto-Electronics

      Vol:
    E82-C No:8
      Page(s):
    1578-1583

    We successfully fabricated plastic ferrules and split alignment sleeves for single-mode fiber-optic connectors by the injection molding process. Liquid crystalline polymer (LCP) was used as the molding material for the ferrule. We introduced an eccentricity control mechanism into the ferrule mold and realized an eccentricity of less than 1 µm. As the molding material for the sleeve, thermosetting epoxy resin was used. Suitable mechanical properties were realized by employing appropriate dimensional design and the molding process. The optical characteristics of a system combining these plastic components are compatible with single-mode SC-type connectors and are also stable under hot and humid conditions.

  • Effect of Surface Roughness Profiles on Optical Characteristics of Plastic Split Sleeves for Single-Mode Fiber-Optic Connectors

    Yoshito SHUTO  Hirotsugu SATO  Shuichi YANAGI  Masayoshi OHNO  Shin SUMIDA  Shunichi TOHNO  

     
    PAPER-Optoelectronics

      Vol:
    E83-C No:10
      Page(s):
    1657-1662

    We successfully fabricated split alignment sleeves for single-mode operation with the injection-molding technique using both thermosetting epoxy resin and thermoplastic polyetherimide (PEI) resin. The relationship between the surface smoothness and the connection-loss characteristics of these injection-molded plastic sleeves was investigated. We made two-dimensional contour maps of the outer and inner surfaces of the plastic sleeves using the measured surface roughness. There were many contour lines on both the outer and inner surfaces of the PEI sleeve. In contrast, the epoxy sleeves had very smooth surface profiles. An offset Δr was estimated by using the inner-surface roughness data of the sleeve-ferrule contact regions. The connection loss of the sleeve increased as the Δr value increased. The measured losses agree fairly well with the theoretical losses estimated by using the Δr values. The PEI sleeves exhibited large Δr values, and one-third of them had large connection losses of > 0.5 dB. In contrast, the epoxy sleeves had very small Δr values of < 0.6 µm, and exhibited an average loss of < 0.1 dB.