1-2hit |
Hochul LEE Youngchang YOON Ickhyun SONG Hyungcheol SHIN
As the gate area decreases to the order of a square micron, individual trapping events can be detected as fluctuations between discrete levels of the drain current, known as random telegraph signal (RTS) noise. Many circuit application areas such as CMOS Image sensor and flash memory are already suffering from RTS noise. Especially, in case of flash memory, FN stress causes threshold voltage shift problems due to generation of additional oxide traps, which degrades circuit performance. In this paper, we investigated how FN stress effects on RTS noise behavior in MOSFET and monitored it in both the time domain and frequency domain.
Hochul LEE Youngchang YOON Seongjae CHO Hyungcheol SHIN
Accurate extraction of the trap position in the oxide in deep-submicron MOSFET by RTN measurement has been investigated both theoretically and experimentally. The conventional equation based on the ratio of emission time and capture time ignores two effects, that is, the poly gate depletion effect and surface potential variation in strong inversion regime. In this paper, by including both of the two effects, we have derived a new equation which gives us more accurate information of the trap depth from the interface and the trap energy. With experimental result, we compare the trap depth obtained from the new equation and that of the conventional method.