The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hongwei CHEN(1hit)

1-1hit
  • Feature Selection and Parameter Optimization of Support Vector Machines Based on a Local Search Based Firefly Algorithm for Classification of Formulas in Traditional Chinese Medicine Open Access

    Wen SHI  Jianling LIU  Jingyu ZHANG  Yuran MEN  Hongwei CHEN  Deke WANG  Yang CAO  

     
    LETTER-Algorithms and Data Structures

      Pubricized:
    2021/11/16
      Vol:
    E105-A No:5
      Page(s):
    882-886

    Syndrome is a crucial principle of Traditional Chinese Medicine. Formula classification is an effective approach to discover herb combinations for the clinical treatment of syndromes. In this study, a local search based firefly algorithm (LSFA) for parameter optimization and feature selection of support vector machines (SVMs) for formula classification is proposed. Parameters C and γ of SVMs are optimized by LSFA. Meanwhile, the effectiveness of herbs in formula classification is adopted as a feature. LSFA searches for well-performing subsets of features to maximize classification accuracy. In LSFA, a local search of fireflies is developed to improve FA. Simulations demonstrate that the proposed LSFA-SVM algorithm outperforms other classification algorithms on different datasets. Parameters C and γ and the features are optimized by LSFA to obtain better classification performance. The performance of FA is enhanced by the proposed local search mechanism.