The search functionality is under construction.

Author Search Result

[Author] Huan WANG(9hit)

1-9hit
  • Multi-Objective Ant Lion Optimizer Based on Time Weight

    Yi LIU  Wei QIN  Jinhui ZHANG  Mengmeng LI  Qibin ZHENG  Jichuan WANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/03/11
      Vol:
    E104-D No:6
      Page(s):
    901-904

    Multi-objective evolutionary algorithms are widely used in many engineering optimization problems and artificial intelligence applications. Ant lion optimizer is an outstanding evolutionary method, but two issues need to be solved to extend it to the multi-objective optimization field, one is how to update the Pareto archive, and the other is how to choose elite and ant lions from archive. We develop a novel multi-objective variant of ant lion optimizer in this paper. A new measure combining Pareto dominance relation and distance information of individuals is put forward and used to tackle the first issue. The concept of time weight is developed to handle the second problem. Besides, mutation operation is adopted on solutions in middle part of archive to further improve its performance. Eleven functions, other four algorithms and four indicators are taken to evaluate the new method. The results show that proposed algorithm has better performance and lower time complexity.

  • A Frame-Dependent Fuzzy Compensation Method for Speech Recognition over Time-Varying Telephone Channels

    Wei-Wen HUNG  Hsiao-Chuan WANG  

     
    PAPER-Speech Processing and Acoustics

      Vol:
    E82-D No:2
      Page(s):
    431-438

    Speech signals transmitted over telephone network often suffer from interference due to ambient noise and channel distortion. In this paper, a novel frame-dependent fuzzy channel compensation (FD-FCC) method employing two-stage bias subtraction is proposed to minimize the channel effect. First, through maximum likelihood (ML) estimation over the set of all word models, we choose the word model which is best matched with the input utterance. Then, based upon this word model, a set of mixture biases can be derived by averaging the cepstral differences between the input utterance and the chosen model. In the second stage, instead of using a single bias, a frame-dependent bias is calculated for each input frame to equalize the channel variations in the input utterance. This frame-dependent bias is achieved by the convex combination of those mixture biases which are weighted by a fuzzy membership function. Experimental results show that the channel effect can be effectively canceled even though the additive background noise is involved in a telephone speech recognition system.

  • Doppler Resilient Waveforms Design in MIMO Radar via a Generalized Null Space Method

    Li SHEN  Jiahuan WANG  Wei GUO  Rong LUO  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2022/05/23
      Vol:
    E105-A No:11
      Page(s):
    1503-1507

    To mitigate the interference caused by range sidelobes in multiple-input multiple-output (MIMO) radar, we propose a new method to construct Doppler resilient complementary waveforms from complete complementary code (CCC). By jointly designing the transmit pulse train and the receive pulse weights, the range sidelobes can vanish within a specified Doppler interval. In addition, the output signal-to-noise ratio (SNR) is maximized subject to the Doppler resilience constraint. Numerical results show that the designed waveforms have better Doppler resilience than the previous works.

  • C/V Segmentation on Mandarin Spontaneous Spoken Speech Signals Using SNR Improvement and Energy Variation

    Ching-Ta LU  Hsiao-Chuan WANG  

     
    LETTER-Speech and Hearing

      Vol:
    E89-D No:1
      Page(s):
    363-366

    An efficient and simple approach to consonant/vowel (C/V) segmentation by incorporating the SNR improvement of a speech enhancement system with the energy variation of two adjacent frames is proposed. Experimental results show that the proposed scheme performs well in segmenting C/V for a spontaneously spoken utterance.

  • Dynamic Allocation of SPM Based on Time-Slotted Cache Conflict Graph for System Optimization

    Jianping WU  Ming LING  Yang ZHANG  Chen MEI  Huan WANG  

     
    PAPER-Computer System

      Vol:
    E95-D No:8
      Page(s):
    2039-2052

    This paper proposes a novel dynamic Scratch-pad Memory allocation strategy to optimize the energy consumption of the memory sub-system. Firstly, the whole program execution process is sliced into several time slots according to the temporal dimension; thereafter, a Time-Slotted Cache Conflict Graph (TSCCG) is introduced to model the behavior of Data Cache (D-Cache) conflicts within each time slot. Then, Integer Nonlinear Programming (INP) is implemented, which can avoid time-consuming linearization process, to select the most profitable data pages. Virtual Memory System (VMS) is adopted to remap those data pages, which will cause severe Cache conflicts within a time slot, to SPM. In order to minimize the swapping overhead of dynamic SPM allocation, a novel SPM controller with a tightly coupled DMA is introduced to issue the swapping operations without CPU's intervention. Last but not the least, this paper discusses the fluctuation of system energy profit based on different MMU page size as well as the Time Slot duration quantitatively. According to our design space exploration, the proposed method can optimize all of the data segments, including global data, heap and stack data in general, and reduce the total energy consumption by 27.28% on average, up to 55.22% with a marginal performance promotion. And comparing to the conventional static CCG (Cache Conflicts Graph), our approach can obtain 24.7% energy profit on average, up to 30.5% with a sight boost in performance.

  • Fiber Optical CATV System Performance Improvement by Using Split-Band and Optical VSB Modulation Techniques

    Hai-Han LU  Shah-Jye TZENG  Ming-Chuan WANG  Hsu-Hung HUANG  

     
    LETTER-Fiber-Optic Transmission

      Vol:
    E86-B No:11
      Page(s):
    3296-3299

    We propose and demonstrate a directly modulated AM-VSB CATV system employing split-band and optical vestigial sideband (VSB) modulation techniques. Systems' performance can be improved by using optical VSB modulation and split-band techniques simultaneously. Our proposed directly modulated transmission system is simpler and more cost-effective than conventional externally modulated transmission system because of external modulator and complicated stimulated Brillouin scattering (SBS)-suppression method are not required.

  • An Explicit-Form Gain Factor for Speech Enhancement Using Spectral-Domain-Constrained Approach

    Ching-Ta LU  Hsiao-Chuan WANG  

     
    PAPER-Speech and Hearing

      Vol:
    E89-D No:3
      Page(s):
    1195-1202

    Employing noise masking threshold (NMT) to adapt a speech enhancement system has become popular due to the advantage of rendering the residual noise to perceptually white. Most methods employ the NMT to empirically adjust the parameters of a speech enhancement system according to the various properties of noise. In this article, without any predefined empirical factor, an explicit-form gain factor for a frequency bin is derived by perceptually constraining the residual noise below the NMT in spectral domain. This perceptual constraint preserves the spectrum of noisy speech when the level of residual noise is less than the NMT. If the level of residual noise exceeds the NMT, then the spectrum of noisy speech is suppressed to reduce the corrupting noise. Experimental results show that the proposed approach can efficiently remove the added noise in cases of various noise corruptions, and almost free from musical residual noise.

  • Failure Detection in P2P-Grid System

    Huan WANG  Hideroni NAKAZATO  

     
    PAPER-Grid System

      Pubricized:
    2015/09/15
      Vol:
    E98-D No:12
      Page(s):
    2123-2131

    Peer-to-peer (P2P)-Grid systems are being investigated as a platform for converging the Grid and P2P network in the construction of large-scale distributed applications. The highly dynamic nature of P2P-Grid systems greatly affects the execution of the distributed program. Uncertainty caused by arbitrary node failure and departure significantly affects the availability of computing resources and system performance. Checkpoint-and-restart is the most common scheme for fault tolerance because it periodically saves the execution progress onto stable storage. In this paper, we suggest a checkpoint-and-restart mechanism as a fault-tolerant method for applications on P2P-Grid systems. Failure detection mechanism is a necessary prerequisite to fault tolerance and fault recovery in general. Given the highly dynamic nature of nodes within P2P-Grid systems, any failure should be detected to ensure effective task execution. Therefore, failure detection mechanism as an integral part of P2P-Grid systems was studied. We discussed how the design of various failure detection algorithms affects their performance in average failure detection time of nodes. Numerical analysis results and implementation evaluation are also provided to show different average failure detection times in real systems for various failure detection algorithms. The comparison shows the shortest average failure detection time by 8.8s on basis of the WP failure detector. Our lowest mean time to recovery (MTTR) is also proven to have a distinct advantage with a time consumption reduction of about 5.5s over its counterparts.

  • An Adaptive Fusion Successive Cancellation List Decoder for Polar Codes with Cyclic Redundancy Check

    Yuhuan WANG  Hang YIN  Zhanxin YANG  Yansong LV  Lu SI  Xinle YU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/07/08
      Vol:
    E103-B No:1
      Page(s):
    43-51

    In this paper, we propose an adaptive fusion successive cancellation list decoder (ADF-SCL) for polar codes with single cyclic redundancy check. The proposed ADF-SCL decoder reasonably avoids unnecessary calculations by selecting the successive cancellation (SC) decoder or the adaptive successive cancellation list (AD-SCL) decoder depending on a log-likelihood ratio (LLR) threshold in the decoding process. Simulation results show that compared to the AD-SCL decoder, the proposed decoder can achieve significant reduction of the average complexity in the low signal-to-noise ratio (SNR) region without degradation of the performance. When Lmax=32 and Eb/N0=0.5dB, the average complexity of the proposed decoder is 14.23% lower than that of the AD-SCL decoder.