The search functionality is under construction.

Author Search Result

[Author] Hui LIU(18hit)

1-18hit
  • An Algorithm of Connecting Broken Objects Based on the Skeletons

    Chao XU  Dongxiang ZHOU  Yunhui LIU  

     
    LETTER-Pattern Recognition

      Pubricized:
    2016/08/10
      Vol:
    E99-D No:11
      Page(s):
    2832-2835

    The segmentation of Mycobacterium tuberculosis images forms the basis for the computer-aided diagnosis of tuberculosis. The segmented objects are often broken due to the low-contrast objects and the limits of segmentation method. This will result in decreasing the accuracy of segmentation and recognition. A simple and effective post-processing method is proposed to connect the broken objects. The broken objects in the segmented binary images are connected based on the information obtained from their skeletons. Experimental results demonstrate the effectiveness of our proposed method.

  • Contrast Enhancement of Mycobacterium Tuberculosis Images Based on Improved Histogram Equalization

    Chao XU  Dongxiang ZHOU  Keju PENG  Weihong FAN  Yunhui LIU  

     
    LETTER-Biological Engineering

      Pubricized:
    2016/07/27
      Vol:
    E99-D No:11
      Page(s):
    2847-2850

    There are often low contrast Mycobacterium tuberculosis (MTB) objects in the MTB images. Based on improved histogram equalization (HE), a framework of contrast enhancement is proposed to increase the contrast of MTB images. Our proposed algorithm was compared with the traditional HE and the weighted thresholded HE. The experimental results demonstrate that our proposed algorithm has better performance in contrast enhancement, artifacts suppression, and brightness preserving for MTB images.

  • BAT: Performance-Driven Crosstalk Mitigation Based on Bus-Grouping Asynchronous Transmission

    Guihai YAN  Yinhe HAN  Xiaowei LI  Hui LIU  

     
    PAPER-Integrated Electronics

      Vol:
    E91-C No:10
      Page(s):
    1690-1697

    Crosstalk delay within an on-chip bus can induce severe transmission performance penalties. The Bus-grouping Asynchronous Transmission (BAT) scheme is proposed to mitigate the performance degradation. Furthermore, considering the distinct spatial locality of transition distribution on some types of buses, we use the locality to optimize the BAT. In terms of the implementation, we propose the Differential Counter Cluster (DCC) synchronous mechanism to synchronize the data transmission, and the Delay Active Shielding (DAS) to protect some critical signals from crosstalk and optimize the routing area overhead. The BAT is scalable with the variation of bus width with little extra implementation complexity. The effectiveness of the BAT is evaluated by focusing on the on-chip buses of a superscalar microprocessor simulator using the SPEC CPU2000 benchmarks. When applied to a 64-bit on-chip instruction bus, the BAT scheme, compared with the conservative approach, Codec and Variable Cycle Transmission (DYN) approaches, improves performance by 55+%, 10+%, 30+%, respectively, at the expense of 13% routing area overhead.

  • Energy Saving for Cognitive Multicast OFDM Systems: A Time-Frequency Two-Dimensional Method

    Wenjun XU  Shengyu LI  Zhihui LIU  Jiaru LIN  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E98-B No:6
      Page(s):
    974-983

    This paper studies the energy-saving problem in cognitive multicast orthogonal frequency-division multiplexing (OFDM) systems, for which a time-frequency two-dimensional model is established to enable the system energy conservation through joint temporal and spectral adaptations. The formulated two-dimensional problem, minimizing the total power consumption whilst guaranteeing the minimal-rate requirement for each multicast session and constraining the maximal perceived interference in each timeslot for the active primary user, is categorized as mixed integer non-convex programming, whose optimal solution is intractable in general. However, based on the time-sharing property, an asymptotically optimal algorithm is proposed by jointly iterating spectrum element (SE) assignment and power allocation. Moreover, a suboptimal algorithm, which carries out SE assignment and power allocation sequentially, is presented as well to reduce the computation complexity. Simulation results show the proposed joint algorithm can achieve the near-optimal solution, and the proposed sequential algorithm approximates to the joint one very well with a gap of less than 3%. Compared with the existing slot-by-slot energy-saving algorithms, the total power consumption is considerably decreased due to the combined exploitation of time and frequency dimensions.

  • Optimizing Hash Join with MapReduce on Multi-Core CPUs

    Tong YUAN  Zhijing LIU  Hui LIU  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2016/02/04
      Vol:
    E99-D No:5
      Page(s):
    1316-1325

    In this paper, we exploit MapReduce framework and other optimizations to improve the performance of hash join algorithms on multi-core CPUs, including No partition hash join and partition hash join. We first implement hash join algorithms with a shared-memory MapReduce model on multi-core CPUs, including partition phase, build phase, and probe phase. Then we design an improved cuckoo hash table for our hash join, which consists of a cuckoo hash table and a chained hash table. Based on our implementation, we also propose two optimizations, one for the usage of SIMD instructions, and the other for partition phase. Through experimental result and analysis, we finally find that the partition hash join often outperforms the No partition hash join, and our hash join algorithm is faster than previous work by an average of 30%.

  • Intercarrier-Interference-Aware Energy Saving for High-Mobility Cognitive OFDM Systems

    Wenjun XU  Xuemei ZHOU  Yanda CHEN  Zhihui LIU  Zhiyong FENG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/07/18
      Vol:
    E101-B No:1
      Page(s):
    203-212

    Cognitive orthogonal frequency-division multiplexing (OFDM) systems are spectrum-efficient yet vulnerable to intercarrier interference (ICI), especially in high-mobility scenarios. In this paper, the energy efficiency optimization problem in high-mobility cognitive OFDM system is considered. The aim is to maximize the energy efficiency by adapting subcarrier bandwidth, power allocation and sensing duration in the presence of ICI, under the constraints of the total power budget of secondary networks, the probabilistic interference limits for the protection of primary networks, and the subcarrier spacing restriction for high-mobility OFDM systems. In order to tackle the intractable non-convex optimization problem induced by ICI, an ICI-aware power allocation algorithm is proposed, by referring to noncooperative game theory. Moreover, a near-optimal subcarrier bandwidth search algorithm based on golden section methods is also presented to maximize the system energy efficiency. Simulation results show that the proposed algorithms can achieve a considerable energy efficiency improvement by up to 133% compared to the traditional static subcarrier bandwidth and power allocation schemes.

  • Automatic Recognition of Mycobacterium Tuberculosis Based on Active Shape Model

    Chao XU  Dongxiang ZHOU  Tao GUAN  Yongping ZHAI  Yunhui LIU  

     
    PAPER-Pattern Recognition

      Pubricized:
    2016/01/08
      Vol:
    E99-D No:4
      Page(s):
    1162-1171

    This paper realized the automatic recognition of Mycobacterium tuberculosis in Ziehl-Neelsen stained images by the conventional light microscopy, which can be used in the computer-aided diagnosis of the tuberculosis. We proposed a novel recognition method based on active shape model. First, the candidate bacillus objects are segmented by a method of marker-based watershed transform. Next, a point distribution model of the object shape is proposed to label the landmarks on the object automatically. Then the active shape model is performed after aligning the training set with a weight matrix. The deformation regulation of the object shape is discovered and successfully applied in recognition without using geometric and other commonly used features. During this process, a width consistency constraint is combined with the shape parameter to improve the accuracy of the recognition. Experimental results demonstrate that the proposed method yields high accuracy in the images with different background colors. The recognition accuracy in object level and image level are 92.37% and 97.91% respectively.

  • Mobility Robustness Optimization in Femtocell Networks Based on Ant Colony Algorithm

    Haijun ZHANG  Hui LIU  Wenmin MA  Wei ZHENG  Xiangming WEN  Chunxiao JIANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:4
      Page(s):
    1455-1458

    Mobility Robustness Optimization (MRO) is one of the most important goals in LTE-Advanced Self-Organizing Networks (SON). Seamless handover in femtocell network is urgent and challenging, which has not been paid enough attention. Handover decision parameters, such as Time-To-Trigger (TTT), Hysteresis, Cell Individual Offset (CIO), have great effect on mobility performance, which may lead to Radio Link Failures (RLFs) and Unnecessary Handover. This letter proposes a handover parameters optimization approach based on Ant Colony Algorithm in the femtocell networks. The simulation result shows that the proposed scheme has a better performance than the fixed parameters method.

  • A Novel Change Detection Method for Unregistered Optical Satellite Images

    Wang LUO  Hongliang LI  Guanghui LIU  Guan GUI  

     
    LETTER-Multimedia Systems for Communications

      Vol:
    E95-B No:5
      Page(s):
    1890-1893

    In this letter, we propose a novel method for change detection in multitemporal optical satellite images. Unlike the tradition methods, the proposed method is able to detect changed region even from unregistered images. In order to obtain the change detection map from the unregistered images, we first compute the sum of the color difference (SCD) of a pixel to all pixels in an input image. Then we calculate the SCD of this pixel to all pixels in the other input image. Finally, we use the difference of the two SCDs to represent the change detection map. Experiments on the multitemporal images demonstrates the good performance of the proposed method on the unregistered images.

  • Construction of a Class of Linear Codes with at Most Three-Weight and the Application

    Wenhui LIU  Xiaoni DU  Xingbin QIAO  

     
    PAPER-Coding Theory

      Pubricized:
    2023/06/26
      Vol:
    E107-A No:1
      Page(s):
    119-124

    Linear codes are widely studied due to their important applications in secret sharing schemes, authentication codes, association schemes and strongly regular graphs, etc. In this paper, firstly, a class of three-weight linear codes is constructed by selecting a new defining set, whose weight distributions are determined by exponential sums. Results show that almost all the constructed codes are minimal and thus can be used to construct secret sharing schemes with sound access structures. Particularly, a class of projective two-weight linear codes is obtained and based on which a strongly regular graph with new parameters is designed.

  • Learning from Multiple Sources via Multiple Domain Relationship

    Zhen LIU  Junan YANG  Hui LIU  Jian LIU  

     
    LETTER-Pattern Recognition

      Pubricized:
    2016/04/11
      Vol:
    E99-D No:7
      Page(s):
    1941-1944

    Transfer learning extracts useful information from the related source domain and leverages it to promote the target learning. The effectiveness of the transfer was affected by the relationship among domains. In this paper, a novel multi-source transfer learning based on multi-similarity was proposed. The method could increase the chance of finding the sources closely related to the target to reduce the “negative transfer” and also import more knowledge from multiple sources for the target learning. The method explored the relationship between the sources and the target by multi-similarity metric. Then, the knowledge of the sources was transferred to the target based on the smoothness assumption, which enforced that the target classifier shares similar decision values with the relevant source classifiers on the unlabeled target samples. Experimental results demonstrate that the proposed method can more effectively enhance the learning performance.

  • A Novel RZF Precoding Method Based on Matrix Decomposition: Reducing Complexity in Massive MIMO Systems

    Qian DENG  Li GUO  Jiaru LIN  Zhihui LIU  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:2
      Page(s):
    439-446

    In this paper, we propose an efficient regularized zero-forcing (RZF) precoding method that has lower hardware resource requirements and produces a shorter delay to the first transmitted symbol compared with truncated polynomial expansion (TPE) that is based on Neumann series in massive multiple-input multiple-output (MIMO) systems. The proposed precoding scheme, named matrix decomposition-polynomial expansion (MDPE), essentially applies a matrix decomposition algorithm based on polynomial expansion to significantly reduce full matrix multiplication computational complexity. Accordingly, it is suitable for real-time hardware implementations and high-mobility scenarios. Furthermore, the proposed method provides a simple expression that links the optimization coefficients to the ratio of BS/UTs antennas (β). This approach can speed-up the convergence to the matrix inverse by a matrix polynomial with small terms and further reduce computation costs. Simulation results show that the MDPE scheme can rapidly approximate the performance of the full precision RZF and optimal TPE algorithm, while adaptively selecting matrix polynomial terms in accordance with the different β and SNR situations. It thereby obtains a high average achievable rate of the UTs under power allocation.

  • A Novel Two-Stage Compression Scheme Combining Polar Coding and Linear Prediction Coding for Fronthaul Links in Cloud-RAN

    Fangliao YANG  Kai NIU  Chao DONG  Baoyu TIAN  Zhihui LIU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2016/11/29
      Vol:
    E100-B No:5
      Page(s):
    691-701

    The transmission on fronthaul links in the cloud radio access network has become a bottleneck with the increasing data rate. In this paper, we propose a novel two-stage compression scheme for fronthaul links. In the first stage, the commonly used techniques like cyclic prefix stripping and sampling rate adaptation are implemented. In the second stage, a structure called linear prediction coding with decision threshold (LPC-DT) is proposed to remove the redundancies of signal. Considering that the linear prediction outputs have large dynamic range, a two-piecewise quantization with optimized decision threshold is applied to enhance the quantization performance. In order to further lower the transmission rate, a multi-level successive structure of lossless polar source coding is proposed to compress the quantization output with low encoding and decoding complexity. Simulation results demonstrate that the proposed scheme with LPC-DT and LPSC offers not only significantly better compression ratios but also more flexibility in bandwidth settings compared with traditional ones.

  • Set-Based Boosting for Instance-Level Transfer on Multi-Classification

    Haibo YIN  Jun-an YANG  Wei WANG  Hui LIU  

     
    PAPER-Pattern Recognition

      Pubricized:
    2017/01/26
      Vol:
    E100-D No:5
      Page(s):
    1079-1086

    Transfer boosting, a branch of instance-based transfer learning, is a commonly adopted transfer learning method. However, currently popular transfer boosting methods focus on binary classification problems even though there are many multi-classification tasks in practice. In this paper, we developed a new algorithm called MultiTransferBoost on the basis of TransferBoost for multi-classification. MultiTransferBoost firstly separated the multi-classification problem into several orthogonal binary classification problems. During each iteration, MultiTransferBoost boosted weighted instances from different source domains while each instance's weight was assigned and updated by evaluating the difficulty of the instance being correctly classified and the “transferability” of the instance's corresponding source domain to the target. The updating process repeated until it reached the predefined training error or iteration number. The weight update factors, which were analyzed and adjusted to minimize the Hamming loss of the output coding, strengthened the connections among the sub binary problems during each iteration. Experimental results demonstrated that MultiTransferBoost had better classification performance and less computational burden than existing instance-based algorithms using the One-Against-One (OAO) strategy.

  • Optimal Power Splitting and Power Allocation in EH-Enabled Multi-Link Multi-Antenna Relay Networks

    Shengyu LI  Wenjun XU  Zhihui LIU  Junyi WANG  Jiaru LIN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/09
      Vol:
    E100-B No:8
      Page(s):
    1480-1488

    This paper studies the multi-link multi-antenna amplify-and-forward (AF) relay system, in which multiple source-destination pairs communicate with the aid of an energy harvesting (EH)-enabled relay and the relay utilizes the power splitting (PS) protocol to accomplish simultaneous EH and information forwarding (IF). Specifically, independent PS, i.e., allow each antenna to have an individual PS factor, and cooperative power allocation (PA) i.e., adaptively allocate the harvested energy to each channel, are proposed to increase the signal processing degrees of freedom and energy utilization. Our objective is to maximize the minimum rate of all source-destination pairs, i.e., the max-min rate, by jointly optimizing the PS and PA strategies. The optimization problem is first established for the ideal channel state information (CSI) model. To solve the formulated non-convex problem, the optimal forwarding matrix is derived and an auxiliary variable is introduced to remove the coupling of transmission rates in two slots, following which a bi-level iteration algorithm is proposed to determine the optimal PS and PA strategy by jointly utilizing the bisection and golden section methods. The proposal is then extended into the partial CSI model, and the final transmission rate for each source-destination pair is modified by treating the CSI error as random noise. With a similar analysis, it is proved that the proposed bi-level algorithm can also solve the joint PS and PA optimization problem in the partial CSI model. Simulation results show that the proposed algorithm works well in both ideal CSI and partial CSI models, and by means of independent PS and cooperative PA, the achieved max-min rate is greatly improved over existing non-EH-enabled and EH-enabled relay schemes, especially when the signal processing noise at the relay is large and the sources use quite different transmit powers.

  • An Approach for Real-Time Monitoring of Atmospheric Disturbance on a Very-Long Baseline

    Qinghui LIU  Masanori NISHIO  Tomoyuki MIYAZAKI  Seisuke KUJI  

     
    PAPER-Sensing

      Vol:
    E85-B No:7
      Page(s):
    1368-1374

    A new system, in which a real-time VLBI (very-long-baseline interferometer) is utilized, for real-time monitoring of atmospheric disturbances on a very-long baseline has been developed. In this system, beacon waves from geo-stationary satellites are used for received signals and public communication lines are used for data transmission. Connecting the system to the 6-m Kagoshima and the 10-m Mizusawa radio telescopes enables atmospheric disturbances to be observed. The cross-correlation phase was calculated from the received signals, and the Allan standard deviation of the phase was obtained. It was found that the Allan standard deviation across almost the whole region of the time interval reflects atmospheric disturbances.

  • Fast Visual Odometry Based Sparse Geometric Constraint for RGB-D Camera Open Access

    Ruibin GUO  Dongxiang ZHOU  Keju PENG  Yunhui LIU  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2018/10/09
      Vol:
    E102-D No:1
      Page(s):
    214-218

    Pose estimation is a basic requirement for the autonomous behavior of robots. In this article we present a robust and fast visual odometry method to obtain camera poses by using RGB-D images. We first propose a motion estimation method based on sparse geometric constraint and derive the analytic Jacobian of the geometric cost function to improve the convergence performance, then we use our motion estimation method to replace the tracking thread in ORB-SLAM for improving its runtime performance. Experimental results show that our method is twice faster than ORB-SLAM while keeping the similar accuracy.

  • Resource Allocation for MDC Multicast in CRNs with Imperfect Spectrum Sensing and Channel Feedback

    Shengyu LI  Wenjun XU  Zhihui LIU  Kai NIU  Jiaru LIN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:2
      Page(s):
    335-343

    In this paper, resource-efficient multiple description coding (MDC) multicast is investigated in cognitive radio networks with the consideration of imperfect spectrum sensing and imperfect channel feedback. Our objective is to maximize the system goodput, which is defined as the total successfully received data rate of all multicast users, while guaranteeing the maximum transmit power budget and the maximum average received interference constraint. Owing to the uncertainty of the spectrum state and the non-closed-form expression of the objective function, it is difficult to solve the problem directly. To circumvent this problem, a pretreatment is performed, in which we first estimate the real spectrum state of primary users and then propose a Gaussian approximation for the probability density functions of transmission channel gains to simplify the computation of the objective function. Thereafter, a two-stage resource allocation algorithm is presented to accomplish the subcarrier assignment, the optimal transmit channel gain to interference plus noise ratio (T-CINR) setting, and the transmit power allocation separately. Simulation results show that the proposed scheme is able to offset more than 80% of the performance loss caused by imperfect channel feedback when the feedback error is not high, while keeping the average interference on primary users below the prescribed threshold.