The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Ikki FUJIWARA(6hit)

1-6hit
  • A Novel Channel Assignment Method to Ensure Deadlock-Freedom for Deterministic Routing

    Ryuta KAWANO  Hiroshi NAKAHARA  Seiichi TADE  Ikki FUJIWARA  Hiroki MATSUTANI  Michihiro KOIBUCHI  Hideharu AMANO  

     
    PAPER-Computer System

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1798-1806

    Inter-switch networks for HPC systems and data-centers can be improved by applying random shortcut topologies with a reduced number of hops. With minimal routing in such networks; however, deadlock-freedom is not guaranteed. Multiple Virtual Channels (VCs) are efficiently used to avoid this problem. However, previous works do not provide good trade-offs between the number of required VCs and the time and memory complexities of an algorithm. In this work, a novel and fast algorithm, named ACRO, is proposed to endorse the arbitrary routing functions with deadlock-freedom, as well as consuming a small number of VCs. A heuristic approach to reduce VCs is achieved with a hash table, which improves the scalability of the algorithm compared with our previous work. Moreover, experimental results show that ACRO can reduce the average number of VCs by up to 63% when compared with a conventional algorithm that has the same time complexity. Furthermore, ACRO reduces the time complexity by a factor of O(|N|⋅log|N|), when compared with another conventional algorithm that requires almost the same number of VCs.

  • A Layout-Oriented Routing Method for Low-Latency HPC Networks

    Ryuta KAWANO  Hiroshi NAKAHARA  Ikki FUJIWARA  Hiroki MATSUTANI  Michihiro KOIBUCHI  Hideharu AMANO  

     
    PAPER-Interconnection networks

      Pubricized:
    2017/07/14
      Vol:
    E100-D No:12
      Page(s):
    2796-2807

    End-to-end network latency has become an important issue for parallel application on large-scale high performance computing (HPC) systems. It has been reported that randomly-connected inter-switch networks can lower the end-to-end network latency. This latency reduction is established in exchange for a large amount of routing information. That is, minimal routing on irregular networks is achieved by using routing tables for all destinations in the networks. In this work, a novel distributed routing method called LOREN (Layout-Oriented Routing with Entries for Neighbors) to achieve low-latency with a small routing table is proposed for irregular networks whose link length is limited. The routing tables contain both physically and topologically nearby neighbor nodes to ensure livelock-freedom and a small number of hops between nodes. Experimental results show that LOREN reduces the average latencies by 5.8% and improves the network throughput by up to 62% compared with a conventional compact routing method. Moreover, the number of required routing table entries is reduced by up to 91%, which improves scalability and flexibility for implementation.

  • Layout-Conscious Expandable Topology for Low-Degree Interconnection Networks

    Thao-Nguyen TRUONG  Khanh-Van NGUYEN  Ikki FUJIWARA  Michihiro KOIBUCHI  

     
    PAPER-Computer System

      Pubricized:
    2016/02/02
      Vol:
    E99-D No:5
      Page(s):
    1275-1284

    System expandability becomes a major concern for highly parallel computers and data centers, because their number of nodes gradually increases year by year. In this context we propose a low-degree topology and its floor layout in which a cabinet or node set can be newly inserted by connecting short cables to a single existing cabinet. Our graph analysis shows that the proposed topology has low diameter, low average shortest path length and short average cable length comparable to existing topologies with the same degree. When incrementally adding nodes and cabinets to the proposed topology, its diameter and average shortest path length increase modestly. Our discrete-event simulation results show that the proposed topology provides a comparable performance to 2-D Torus for some parallel applications. The network cost and power consumption of DSN-F modestly increase when compared to the counterpart non-random topologies.

  • Combinatorial Auction-Based Marketplace Mechanism for Cloud Service Reservation

    Ikki FUJIWARA  Kento AIDA  Isao ONO  

     
    PAPER-Computer System

      Vol:
    E95-D No:1
      Page(s):
    192-204

    This paper proposes a combinatorial auction-based marketplace mechanism for cloud computing services, which allows users to reserve arbitrary combination of services at requested timeslots, prices and quality of service. The proposed mechanism helps enterprise users build workflow applications in a cloud computing environment, specifically on the platform-as-a-service, where the users need to compose multiple types of services at different timeslots. The proposed marketplace mechanism consists of a forward market for an advance reservation and a spot market for immediate allocation of services. Each market employs mixed integer programming to enforce a Pareto optimum allocation with maximized social economic welfare, as well as double-sided auction design to encourage both users and providers to compete for buying and selling the services. The evaluation results show that (1) the proposed forward/combinatorial mechanism outperforms other non-combinatorial and/or non-reservation (spot) mechanisms in both user-centric rationality and global efficiency, and (2) running both a forward market and a spot market improves utilization without disturbing advance reservations depending on the provider's policy.

  • The Case for Network Coding for Collective Communication on HPC Interconnection Networks Open Access

    Ahmed SHALABY  Ikki FUJIWARA  Michihiro KOIBUCHI  

     
    PAPER-Information Network

      Pubricized:
    2014/12/11
      Vol:
    E98-D No:3
      Page(s):
    661-670

    Recently network bandwidth becomes a performance concern particularly for collective communication since bisection bandwidths of supercomputers become far less than their full bisection bandwidths. In this context we propose the use of a network coding technique to reduce the number of unicasts and the size of data transferred in latency-sensitive collective communications in supercomputers. Our proposed network coding scheme has a hierarchical multicasting structure with intra-group and inter-group unicasts. Quantitative analysis show that the aggregate path hop counts by our hierarchical network coding decrease as much as 94% when compared to conventional unicast-based multicasts. We validate these results by cycle-accurate network simulations. In 1,024-switch networks, the network reduces the execution time of collective communications as much as 70%. We also show that our hierarchical network coding is beneficial for any packet size.

  • Job Mapping and Scheduling on Free-Space Optical Networks

    Yao HU  Ikki FUJIWARA  Michihiro KOIBUCHI  

     
    PAPER-Computer System

      Pubricized:
    2016/08/16
      Vol:
    E99-D No:11
      Page(s):
    2694-2704

    A number of parallel applications run on a high-performance computing (HPC) system simultaneously. Job mapping and scheduling become crucial to improve system utilization, because fragmentation prevents an incoming job from being assigned even if there are enough compute nodes unused. Wireless supercomputers and datacenters with free-space optical (FSO) terminals have been proposed to replace the conventional wired interconnection so that a diverse application workload can be better supported by changing their network topologies. In this study we firstly present an efficient job mapping by swapping the endpoints of FSO links in a wireless HPC system. Our evaluation shows that an FSO-equipped wireless HPC system can achieve shorter average queuing length and queuing time for all the dispatched user jobs. Secondly, we consider the use of a more complicated and enhanced scheduling algorithm, which can further improve the system utilization over different host networks, as well as the average response time for all the dispatched user jobs. Finally, we present the performance advantages of the proposed wireless HPC system under more practical assumptions such as different cabinet capacities and diverse subtopology packings.