The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Jae Sung LEE(2hit)

1-2hit
  • Rigorous Design and Analysis of Tunneling Field-Effect Transistor with Hetero-Gate-Dielectric and Tunneling-Boost n-Layer

    Jae Hwa SEO  Jae Sung LEE  Yun Soo PARK  Jung-Hee LEE  In Man KANG  

     
    PAPER

      Vol:
    E96-C No:5
      Page(s):
    644-648

    A gate-all-around tunneling field-effect transistor (GAA TFET) with local high-k gate-dielectric and tunneling-boost n-layer based on silicon is demonstrated by two dimensional (2D) device simulation. Application of local high-k gate-dielectric and n-layer leads to reduce the tunneling barrier width between source and intrinsic channel regions. Thus, it can boost the on-current (Ion) characteristics of TFETs. For optimal design of the proposed device, a tendency of device characteristics has been analyzed in terms of the high-k dielectric length (Lhigh-k) for the fixed n-layer length (Ln-layer). The simulation results have been analyzed in terms of on- and off-current (Ion and Ioff), subthreshold swing (SS), and RF performances.

  • Performance of Gate-All-Around Tunneling Field-Effect Transistors Based on Si1-x Gex Layer

    Jae Sung LEE  In Man KANG  

     
    PAPER

      Vol:
    E95-C No:5
      Page(s):
    814-819

    Electrical performances of gate-all-around (GAA) tunneling field-effect transistors (TFETs) based on a silicon germanium (Si1-xGex) layer have been investigated in terms of subthreshold swing (SS), on/off current ratio, on-state current (Ion). Cut-off frequency (fT) and maximum oscillation frequency (fmax) were demonstrated from small-signal parameters such as effective gate resistance (Rg), gate-drain capacitance (Cgd), and transconductance (gm). According to the technology computer-aided design (TCAD) simulation results, the current drivability, fT, and fmax of GAA TFETs based on Si1-xGex layer were higher than those of GAA TFETs based on silicon. The simulated devices had 60 nm channel length and 10 nm channel radius. A GAA TFET with x = 0.4 had maximum Ion of 51.4 µA/µm, maximum fT of 72 GHz, and maximum fmax of 610 GHz. Additionally, improvements of performance at the presented device with PNPN junctions were demonstrated in terms of Ion, SS, fT, and fmax. When the device was designed with x = 0.4 and n+ layer width (Wn) = 6 nm, it shows Ion of 271 µA/µm, fT of 245 GHz, and fmax of 1.49 THz at an operating bias (VGS = VDS = 1.0 V).