1-3hit |
Jae-Hoon SONG Byung-Sung KIM Sangwook NAM
In this paper, a 24GHz transformer-coupled VCO is presented for a wide linear tuning range in the 0.13-µm CMOS process. The measured results of the proposed VCO show that the center frequency is 23.5GHz with 7.4% frequency tuning range. The output frequency curve has wide linear tuning region (5.5%) at the middle of the curve. Also, the VCO exhibits good phase noise of -110.23dBc/Hz at an offset frequency of 1 MHz. It has a compact chip size of 430 × 500µm2. The VCO core DC power consumption is 5.4mW at 1.35V VDD.
Byungjoon KIM Sangwook NAM Hee-Ran AHN Jae-Hoon SONG
This letter proposes a wideband compact DC block design technique. This DC block has a wide pass-band and wide stop-band and transforms termination impedances. It comprises a pair of coupled lines on a defected ground structure (DGS) with capacitor loading. A periodic DGS pattern increases coupling, and, consequently, a wideband DC block design is allowed with a microstrip process on a high dielectric low height substrate. A DC block with equal termination impedances of 50,$Omega$ and another that transforms 50 into 30,$Omega$ are fabricated. The measured fractional bandwidths are 48% and 47%. The size of the DC block is 16.8$ imes$ 15,mm$^2(0.057lambda_0 imes 0.051lambda_0)$.
Byungjoon KIM Duksoo KIM Youngjoon LIM Dooheon YANG Sangwook NAM Jae-Hoon SONG
This paper proposes a high clutter-rejection technique for wall-penetrating frequency-modulated continuous-wave (FMCW) radar. FMCW radars are widely used, as they moderate the receiver saturation problem in wall-penetrating applications by attenuating short-range clutter such as wall-clutter. However, conventional FMCW radars require a very high-order high-pass filter (HPF) to attenuate short-range clutter. A delay-line (DL) is exploited to overcome this problem. Time-delay shifts beat frequencies formed by reflection waves. This means that a proper time-delay increases the ratio of target-beat frequency to clutter-beat frequency. Consequently, low-order HPF fully attenuates short-range clutter. A third-order HPF rejects more than 20 dB and 30 dB for clutter located at 6 m and 3 m, respectively, with a target located at 9 m detection with a 10,000 GHz/s chirp rate and a 28 ns delay-line.