The search functionality is under construction.

Author Search Result

[Author] Jin LIU(5hit)

1-5hit
  • Parameter Dimensioning Algorithms of the PNNI Complex Node Model with Bypasses

    Jin LIU  Zhisheng NIU  Junli ZHENG  

     
    PAPER-Communication Networks and Services

      Vol:
    E83-B No:3
      Page(s):
    638-645

    In this paper, we propose optimization approaches for the parameter determination of the PNNI complex node model. Two optimal objectives are discussed: Least Square Approximation and Maximum Deviation Minimization. For each objective, we propose two practical criteria for setting up bypasses: Maximum Difference Removal and Largest Deviation Removal. Generalized inverse of matrix and linear programming techniques are used to find the solutions. The numerical results show that the least square approximation with the largest deviation removal criteria has the best performance as the number of bypasses increases.

  • A Node-Grouping Based Spatial Spectrum Reuse Method for WLANs in Dense Residential Scenarios

    Jin LIU  Masahide HATANAKA  Takao ONOYE  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E103-A No:7
      Page(s):
    917-927

    Lately, an increasing number of wireless local area network (WLAN) access points (APs) are deployed to serve an ever increasing number of mobile stations (STAs). Due to the limited frequency spectrum, more and more AP and STA nodes try to access the same channel. Spatial spectrum reuse is promoted by the IEEE 802.11ax task group through dynamic sensitivity control (DSC), which permits cochannel operation when the received signal power at the prospective transmitting node (PTN) is lower than an adjusted carrier sensing threshold (CST). Previously-proposed DSC approaches typically calculate the CST without node grouping by using a margin parameter that remains fixed during operation. Setting the margin has previously been done heuristically. Finding a suitable value has remained an open problem. Therefore, herein, we propose a DSC approach that employs a node grouping method for adaptive calculation of the CST at the PTN with a channel-aware and margin-free formula. Numerical simulations for dense residential WLAN scenario reveal total throughput and Jain's fairness index gains of 8.4% and 7.6%, respectively, vs. no DSC (as in WLANs deployed to present).

  • Improving Face Image Representation Using Tangent Vectors and the L1 Norm

    Zhicheng LU  Zhizheng LIANG  Lei ZHANG  Jin LIU  Yong ZHOU  

     
    LETTER-Image

      Vol:
    E99-A No:11
      Page(s):
    2099-2103

    Inspired from the idea of data representation in manifold learning, we derive a novel model which combines the original training images and their tangent vectors to represent each image in the testing set. Different from the previous methods, the L1 norm is used to control the reconstruction error. Considering the fact that the objective function in the proposed model is non-smooth, we utilize the majorization minimization (MM) method to solve the proposed optimization model. It is interesting to note that at each iteration a quadratic optimization problem is formulated and its analytical solution can be achieved, thereby making the proposed algorithm effective. Extensive experiments on face images demonstrate that our method achieves better performance than some previous methods.

  • Bee Colony Algorithm Optimization Based on Link Cost for Routing and Wavelength Assignment in Satellite Optical Networks Open Access

    Yeqi LIU  Qi ZHANG  Xiangjun XIN  Qinghua TIAN  Ying TAO  Naijin LIU  Kai LV  

     
    PAPER-Internet

      Pubricized:
    2019/12/18
      Vol:
    E103-B No:6
      Page(s):
    690-702

    Rapid development of modern communications has initiated essential requirements for providing efficient algorithms that can solve the routing and wavelength assignment (RWA) problem in satellite optical networks. In this paper, the bee colony algorithm optimization based on link cost for RWA (BCO-LCRWA) is tailored for satellite networks composed of intersatellite laser links. In BCO-LCRWA, a cost model of intersatellite laser links is established based on metrics of network transmission performance namely delay and wavelengths utilization, with constraints of Doppler wavelength drift, transmission delay, wavelength consistency and continuity. Specifically, the fitness function of bee colony exploited in the proposed algorithm takes wavelength resources utilization and communication hops into account to implement effective utilization of wavelengths, to avoid unnecessary over-detouring and ensure bit error rate (BER) performance of the system. The simulation results corroborate the improved performance of the proposed algorithm compared with the existing alternatives.

  • A Mathematical Framework for Asynchronous, Distributed, Decision-Making Systems with Semi-Autonomous Entities: Algorithm Synthesis, Simulation, and Evaluation

    Tony S. LEE  Sumit GHOSH  Jin LIU  Xiaolin GE  Anil NERODE  Wolf KOHN  

     
    PAPER-Systems and Control

      Vol:
    E83-A No:7
      Page(s):
    1381-1395

    For many military and civilian large-scale, real-world systems of interest, data are first acquired asynchronously, i. e. at irregular intervals of time, at geographically-dispersed sites, processed utilizing decision-making algorithms, and the processed data then disseminated to other appropriate sites. The term real-world refers to systems under computer control that relate to everyday life and are beneficial to the society in the large. The traditional approach to such problems consists of designing a central entity which collects all data, executes a decision making algorithm sequentially to yield the decisions, and propagates the decisions to the respective sites. Centralized decision making algorithms are slow and highly vulnerable to natural and artificial catastrophes. Recent literature includes successful asynchronous, distributed, decision making algorithm designs wherein the local decision making at every site replaces the centralized decision making to achieve faster response, higher reliability, and greater accuracy of the decisions. Two key issues include the lack of an approach to synthesize asynchronous, distributed, decision making algorithms, for any given problem, and the absence of a comparative analysis of the quality of their decisions. This paper proposes MFAD, a Mathematical Framework for Asynchronous, Distributed Systems, that permits the description of centralized decision-making algorithms and facilities the synthesis of distributed decision-making algorithms. MFAD is based on the Kohn-Nerode distributed hybrid control paradigm. It has been a belief that since the centralized control gathers every necessary data from all entities in the system and utilizes them to compute the decisions, the decisions may be "globally" optimal. In truth, however, as the frequency of the sensor data increases and the environment gets larger, dynamic, and more complex, the decisions are called into question. In the distributed decision-making system, the centralized decision-making is replaced by those of the constituent entities that aim at minimizing a Lagrangian, i. e. a local, non-negative cost criterion, subject to the constraints imposed by the global goal. Thus, computations are carried out locally, utilizing locally obtained dataand appropriate information that is propagated from other sites. It is hypothesized that with each entity engaged in optimizing its individual behavior, asynchronously, concurrently, and independent of other entities, the distributed system will approach "global" optimal behavior. While it does not claim that such algorithms may be synthesized for all centralized real-world systems, this paper implements both the centralized and distributed paradigms for a representative military battlefield command, control, and communication (C3) problem. It also simulates them on a testbed of a network of workstations for a comparative performance evaluation of the centralized and decentralized paradigms in the MFAD framework. While the performance results indicate that the decentralized approach consistently outperforms the centralized scheme, this paper aims at developing a quantitative evaluation of the quality of decisions under the decentralized paradigm. To achieve this goal, it introduces a fundamental concept, embodied through a hypothetical entity termed "Perfect Global Optimization Device (PGOD)," that generates perfect or ideal decisions. PGOD possesses perfect knowledge, i. e. the exact state information of every entity of the entire system, at all times, unaffected by delay. PGOD utilizes the same decision-making algorithm as the centralized paradigm and generates perfect globally-optimal decisions which, though unattainable, provide a fundamental and absolute basis for comparing the quality of decisions. Simulation results reveal that the quality of decisions in the decentralized paradigm are superior to those of the centralized approach and that they approach PGOD's decisions.