The search functionality is under construction.

Author Search Result

[Author] Jing XIA(3hit)

1-3hit
  • Video Saliency Detection Using Spatiotemporal Cues

    Yu CHEN  Jing XIAO  Liuyi HU  Dan CHEN  Zhongyuan WANG  Dengshi LI  

     
    PAPER

      Pubricized:
    2018/06/20
      Vol:
    E101-D No:9
      Page(s):
    2201-2208

    Saliency detection for videos has been paid great attention and extensively studied in recent years. However, various visual scene with complicated motions leads to noticeable background noise and non-uniformly highlighting the foreground objects. In this paper, we proposed a video saliency detection model using spatio-temporal cues. In spatial domain, the location of foreground region is utilized as spatial cue to constrain the accumulation of contrast for background regions. In temporal domain, the spatial distribution of motion-similar regions is adopted as temporal cue to further suppress the background noise. Moreover, a backward matching based temporal prediction method is developed to adjust the temporal saliency according to its corresponding prediction from the previous frame, thus enforcing the consistency along time axis. The performance evaluation on several popular benchmark data sets validates that our approach outperforms existing state-of-the-arts.

  • Compressive Phase Retrieval Realized by Combining Generalized Approximate Message Passing with Cartoon-Texture Model

    Jingjing SI  Jing XIANG  Yinbo CHENG  Kai LIU  

     
    LETTER-Image

      Vol:
    E101-A No:9
      Page(s):
    1608-1615

    Generalized approximate message passing (GAMP) can be applied to compressive phase retrieval (CPR) with excellent phase-transition behavior. In this paper, we introduced the cartoon-texture model into the denoising-based phase retrieval GAMP(D-prGAMP), and proposed a cartoon-texture model based D-prGAMP (C-T D-prGAMP) algorithm. Then, based on experiments and analyses on the variations of the performance of D-PrGAMP algorithms with iterations, we proposed a 2-stage D-prGAMP algorithm, which makes tradeoffs between the C-T D-prGAMP algorithm and general D-prGAMP algorithms. Finally, facing the non-convergence issues of D-prGAMP, we incorporated adaptive damping to 2-stage D-prGAMP, and proposed the adaptively damped 2-stage D-prGAMP (2-stage ADD-prGAMP) algorithm. Simulation results show that, runtime of 2-stage D-prGAMP is relatively equivalent to that of BM3D-prGAMP, but 2-stage D-prGAMP can achieve higher image reconstruction quality than BM3D-prGAMP. 2-stage ADD-prGAMP spends more reconstruction time than 2-stage D-prGAMP and BM3D-prGAMP. But, 2-stage ADD-prGAMP can achieve PSNRs 0.2∼3dB higher than those of 2-stage D-prGAMP and 0.3∼3.1dB higher than those of BM3D-prGAMP.

  • Performance Analysis on the Uplink of Massive MIMO Systems with Superimposed Pilots and Arbitrary-Bit ADCs

    Chen CHEN  Wence ZHANG  Xu BAO  Jing XIA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/10/28
      Vol:
    E105-B No:5
      Page(s):
    629-637

    This paper studies the performance of quantized massive multiple-input multiple-output (MIMO) systems with superimposed pilots (SP), using linear minimum mean-square-error (LMMSE) channel estimation and maximum ratio combining (MRC) detection. In contrast to previous works, arbitrary-bit analog-to-digital converters (ADCs) are considered. We derive an accurate approximation of the uplink achievable rate considering the removal of estimated pilots. Based on the analytical expression, the optimal pilot power factor that maximizes the achievable rate is deduced and an expression for energy efficiency (EE) is given. In addition, the achievable rate and the optimal power allocation policy under some asymptotic limits are analyzed. Analysis shows that the systems with higher-resolution ADCs or larger number of base station (BS) antennas need to allocate more power to pilots. In contrast, more power needs to be allocated to data when the channel is slowly varying. Numerical results show that in the low signal-to-noise ratio (SNR) region, for 1-bit quantizers, SP outperforms time-multiplexed pilots (TP) in most cases, while for systems with higher-resolution ADCs, the SP scheme is suitable for the scenarios with comparatively small number of BS antennas and relatively long channel coherence time.