The search functionality is under construction.

Author Search Result

[Author] Xu BAO(3hit)

1-3hit
  • Analysis of Density-Adaptive Spectrum Access for Cognitive Radio Sensor Networks

    Lei ZHANG  Tiecheng SONG  Jing HU  Xu BAO  

     
    PAPER-Network

      Vol:
    E99-B No:5
      Page(s):
    1101-1109

    Cognitive radio sensor networks (CRSNs) with their dynamic spectrum access capability appear to be a promising solution to address the increasing challenge of spectrum crowding faced by the traditional WSN. In this paper, through maximizing the utility index of the CRSN, a node density-adaptive spectrum access strategy for sensor nodes is proposed that takes account of the node density in a certain event-driven region. For this purpose, considering the burst real-time data traffic, we analyze the energy efficiency (EE) and the packet failure rate (PFR) combining network disconnected rate (NDR) and packet loss rate (PLR) during the channel switching interval (CSI) for both underlay and interweave spectrum access schemes. Numerical results confirm the validity of our theoretical analyses and indicate that the adaptive node density threshold (ANDT) exists for underlay and interweave spectrum access scheme switching.

  • Low-Complexity Detection Based on Landweber Method in the Uplink of Massive MIMO Systems

    Xu BAO  Wence ZHANG  Jisheng DAI  Jianxin DAI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/05/16
      Vol:
    E101-B No:11
      Page(s):
    2340-2347

    In this paper, we devise low-complexity uplink detection algorithms for Massive MIMO systems. We treat the uplink detection as an ill-posed problem and adopt the Landweber Method to solve it. In order to reduce the computational complexity and increase the convergence rate, we propose improved Landweber Method with optimal relax factor (ILM-O) algorithm. In addition, to reduce the order of Landweber Method by introducing a set of coefficients, we propose reduced order Landweber Method (ROLM) algorithm. An analysis on the convergence and the complexity is provided. Numerical results demonstrate that the proposed algorithms outperform the existing algorithm.

  • Performance Analysis on the Uplink of Massive MIMO Systems with Superimposed Pilots and Arbitrary-Bit ADCs

    Chen CHEN  Wence ZHANG  Xu BAO  Jing XIA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/10/28
      Vol:
    E105-B No:5
      Page(s):
    629-637

    This paper studies the performance of quantized massive multiple-input multiple-output (MIMO) systems with superimposed pilots (SP), using linear minimum mean-square-error (LMMSE) channel estimation and maximum ratio combining (MRC) detection. In contrast to previous works, arbitrary-bit analog-to-digital converters (ADCs) are considered. We derive an accurate approximation of the uplink achievable rate considering the removal of estimated pilots. Based on the analytical expression, the optimal pilot power factor that maximizes the achievable rate is deduced and an expression for energy efficiency (EE) is given. In addition, the achievable rate and the optimal power allocation policy under some asymptotic limits are analyzed. Analysis shows that the systems with higher-resolution ADCs or larger number of base station (BS) antennas need to allocate more power to pilots. In contrast, more power needs to be allocated to data when the channel is slowly varying. Numerical results show that in the low signal-to-noise ratio (SNR) region, for 1-bit quantizers, SP outperforms time-multiplexed pilots (TP) in most cases, while for systems with higher-resolution ADCs, the SP scheme is suitable for the scenarios with comparatively small number of BS antennas and relatively long channel coherence time.