The search functionality is under construction.

Author Search Result

[Author] Jinsang KIM(4hit)

1-4hit
  • SET-Tolerant Active Body-Bias Circuits in PD-SOI CMOS Technology

    YoungKyu JANG  Ik-Joon CHANG  Jinsang KIM  

     
    PAPER-Electronic Circuits

      Vol:
    E98-C No:7
      Page(s):
    729-733

    PD-SOI (Partial Depleted Silicon On Insulator) process is a good candidate technology for space system designs, since it features excellent insulation to the silicon substrate compared to the conventional bulk CMOS process. However, the radioactive particles from the low earth orbit can causes single event transient (SET) or abrupt charge collection in a circuit node, leading to a logical error in space systems. Also, the side effects such as the history effect and the kink effect in PD-SOI technology cause the threshold voltage variation, degrading the circuit performance. We propose SET-tolerant PD-SOI CMOS logic circuits using a novel active body-bias scheme. Simulation results show that the proposed circuits are more effective to SET and the side effects as well.

  • DFV-Aware Flip-Flops Using C-Elements

    Changnoh YOON  Youngmin CHO  Jinsang KIM  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E94-C No:7
      Page(s):
    1229-1232

    Advanced nanometer circuits are susceptible to errors caused by process, voltage, and temperature (PVT) variations or due to a single event upset (SEU). State-of-the-art design-for-variability (DFV)-aware flip-flops (FFs) suffer from their area and timing overheads. By utilizing C-element modules, two types of FFs are proposed for error detection and error correction.

  • Variation-Aware Flip Flop for DVFS Applications

    YoungKyu JANG  Changnoh YOON  Ik-Joon CHANG  Jinsang KIM  

     
    PAPER-Electronic Circuits

      Vol:
    E98-C No:5
      Page(s):
    439-445

    Parameter variations in nanometer process technology are one of the major design challenges. They cause delay to be increased on the critical path and may change the logic level of internal nodes. The basic concept to solve these problems at the circuit level, design-for-variability (DFV), is to add an error handling circuit to the conventional circuits so that they are robust to nanometer related variations. The state-of-the-art variation-aware flip flops are mainly evolved from aggressive dynamic voltage and frequency scaling (DVFS) -based low-power application systems which handle errors due to the scaled supply voltage. However, they only detect the timing errors and cannot correct the errors. We propose a variation-aware flip flop which can detect and correct the timing error efficiently. The experimental results show that the proposed variation-aware flip flop is more robust and lower power than the existing approaches.

  • Reconfigurable Inner Product Hardware Architecture for Increased Hardware Utilization in SDR Systems

    Kwangsup SO  Jinsang KIM  Won-Kyung CHO  Young-Soo KIM  Doug Young SUH  

     
    PAPER

      Vol:
    E89-B No:12
      Page(s):
    3242-3249

    Most digital signal processing (DSP) algorithms for multimedia and communication applications require multiplication and addition operations. Especially matrix-matrix or matrix-vector the multiplications frequently used in DSP implementations needs inner product arithmetic which takes the most processing time. Also multiplications for the DSP algorithms for software defined radio (SDR) applications require different input bitwidths. Therefore, the multiplications for inner product need to be sufficiently flexible in terms of bitwidths to utilize hardware resources efficiently. This paper proposes a novel reconfigurable inner product architecture based on a pipelined adder array, which offers increased flexibility in bitwidths of input arrays. The proposed architecture consists of sixteen 44 multipliers and a pipelined adder array and can compute the inner product of input arrays with any combination of multiples of 4 bitwidths such as 44, 48, 412, ... 1616. Experimental results show that the proposed architecture has latency of maximum 9 clock cycles and throughput of 1 clock cycle for inner product of various bitwidths of input arrays. When TSMC 0.18 µm libraries are used, the chip area and critical path of the proposed architecture are 186,411 gates and 2.79 ns, respectively. The proposed architecture can be applied to a reconfigurable arithmetic engine for real-time SDR system designs.