The search functionality is under construction.

Author Search Result

[Author] Jun KATO(3hit)

1-3hit
  • Evaluation of Lightning Surge Characteristics Induced in Subscriber Line at Telecommunication Center End in a Tropical Area

    Tetsuya TOMINAGA  Nobuo KUWABARA  Jun KATO  Annuer RAMLI  A. Halim SAMAD  Hussein Bin AHMAD  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E87-B No:3
      Page(s):
    742-751

    Lightning surges induced on subscriber lines in Kuala Lumpur, Malaysia, which is located in a tropical region, were observed at telecommunication centers. More than 100 surges per line were observed during a three-month period. Peak values, observed using a lightning surge counter, show that lightning surge current occurrences normalized by the number of thunderstorm days and number of subscriber lines closely agreed with data observed in temperate areas, e.g., Japan. Surge waveforms appearing at several points ranging from underground cable ducts to exchange equipment were observed using a wave memory system. The results show that lightning surge currents on the cables were larger than those on a wire, but the correlation between them was weak. Common and differential mode surge waveforms observed using the wave memory system were almost the same. These results will be useful in designing protection circuits for equipment used in tropical areas.

  • Method of Measuring Conducted Noise Voltage with a Floating Measurement System to Ground Open Access

    Naruto ARAI  Ken OKAMOTO  Jun KATO  Yoshiharu AKIYAMA  

     
    PAPER

      Pubricized:
    2020/04/08
      Vol:
    E103-B No:9
      Page(s):
    903-910

    This paper describes a method of measuring the unsymmetric voltage of conducted noise using a floating measurement system. Here, floating means that there is no physical connection to the reference ground. The method works by correcting the measured voltage to the desired unsymmetric voltage using the capacitance between the measurement instrument and the reference ground plane acting as the return path of the conducted electromagnetic noise. The existing capacitance measurement instrument needs a probe in contact with the ground, so it is difficult to use for on-site measurement of stray capacitance to ground at troubleshooting sites where the ground plane is not exposed or no ground connection point is available. The authors have developed a method of measuring stray capacitance to ground that does not require physical connection of the probe to the ground plane. The developed method can be used to estimate the capacitance between the measurement instrument and ground plane even if the distance and relative permittivity of the space are unknown. And a method is proposed for correcting the voltage measured with the floating measurement system to obtain the unsymmetric voltage of the noise by using the measured capacitance to ground. In the experiment, the unsymmetric voltage of a sinusoidal wave transmitting on a co-axial cable was measured with a floating oscilloscope in a shield room and the measured voltage was corrected to within 2dB of expected voltage by using the capacitance measured with the developed method. In addition, the voltage of a rectangular wave measured with the floating oscilloscope, which displays sag caused by the stray capacitance to ground, was corrected to a rectangular wave without sag. This means that the phase of the unsymmetric voltage can also be corrected by the measured stray capacitance. From these results, the effectiveness of the proposed methods is shown.

  • DanceUnisoner: A Parametric, Visual, and Interactive Simulation Interface for Choreographic Composition of Group Dance

    Shuhei TSUCHIDA  Satoru FUKAYAMA  Jun KATO  Hiromu YAKURA  Masataka GOTO  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2023/11/27
      Vol:
    E107-D No:3
      Page(s):
    386-399

    Composing choreography is challenging because it involves numerous iterative refinements. According to our video analysis and interviews, choreographers typically need to imagine dancers' movements to revise drafts on paper since testing new movements and formations with actual dancers takes time. To address this difficulty, we present an interactive group-dance simulation interface, DanceUnisoner, that assists choreographers in composing a group dance in a simulated environment. With DanceUnisoner, choreographers can arrange excerpts from solo-dance videos of dancers throughout a three-dimensional space. They can adjust various parameters related to the dancers in real time, such as each dancer's position and size and each movement's timing. To evaluate the effectiveness of the system's parametric, visual, and interactive interface, we asked seven choreographers to use it and compose group dances. Our observations, interviews, and quantitative analysis revealed their successful usage in iterative refinements and visual checking of choreography, providing insights to facilitate further computational creativity support for choreographers.