The search functionality is under construction.

Author Search Result

[Author] Kazuya ISHIHARA(5hit)

1-5hit
  • ULSI Realization of MPEG2 Realtime Video Encoder and Decoder--An Overview

    Masahiko YOSHIMOTO  Shin-ichi NAKAGAWA  Tetsuya MATSUMURA  Kazuya ISHIHARA  Shin-ichi URAMOTO  

     
    INVITED PAPER

      Vol:
    E78-C No:12
      Page(s):
    1668-1681

    This paper will describe an overview on several design issues and solutions for the realization of MPEG2 encoder &decoder LSIs. ULSI technology and video-coding specific design have been able to actualize an MPEG2 encoder &decoder LSI with realtime capability, flexibility and cost effectiveness, though MPEG2 processing at MP@ML (Main Profile and Main Level) requires an enormous computation power of 10-200 GOPS depending on the motion estimation algorithm and a search range. Video coding processors, whose performance has been enhanced at the rate of one order per 3 years, have reached the performance level required to implement MPEG2 encoding using multiple chip configuration. This has been achieved by a hybrid architecture with video-oriented RISC and hardware engine optimized for coding algorithms. Intensive circuit optimization was carried out for transform coding such as DCT and predictive coding with motion estimation. Now cost effective MPEG2 decoders have begun to penetrate the multimedia market. There are two main design issues. One is the architectural and circuit design which minimizes the silicon area and power dissipation. The other is external DRAM control which makes use of DRAM storage and band width efficiently to reduce the system cost. Also future trends in a deep submicron era will be discussed. A single chip MPEG2 MP@ML encoder is expected to appear in the 0.25 micron era at the latest. An MPEG2 MP@ML decoder could be compressed to an area of about 25 mm2.

  • Physical Design Methodology for On-Chip 64-Mb DRAM MPEG-2 Encoding with a Multimedia Processor

    Hidehiro TAKATA  Rei AKIYAMA  Tadao YAMANAKA  Haruyuki OHKUMA  Yasue SUETSUGU  Toshihiro KANAOKA  Satoshi KUMAKI  Kazuya ISHIHARA  Atsuo HANAMI  Tetsuya MATSUMURA  Tetsuya WATANABE  Yoshihide AJIOKA  Yoshio MATSUDA  Syuhei IWADE  

     
    PAPER-Product Designs

      Vol:
    E85-C No:2
      Page(s):
    368-374

    An on-chip, 64-Mb, embedded, DRAM MPEG-2 encoder LSI with a multimedia processor has been developed. To implement this large-scale and high-speed LSI, we have developed the hierarchical skew control of multi-clocks, with timing verification, in which cross-talk noise is considered, and simple measures taken against the IR drop in the power lines through decoupling capacitors. As a result, the target performance of 263 MHz at 1.5 V has been successfully attained and verified, the cross-talk noise has been considered, and, in addition, it has become possible to restrain the IR drop to 166 mV in the 162 MHz operation block.

  • A Chip Set for Programmable Real-Time MPEG2 MP@ML Video Encoder

    Tetsuya MATSUMURA  Hiroshi SEGAWA  Satoshi KUMAKI  Yoshinori MATSUURA  Atsuo HANAMI  Kazuya ISHIHARA  Shin-ichi NAKAGAWA  Tadashi KASEZAWA  Yoshihide AJIOKA  Atsushi MAEDA  Masahiko YOSHIMOTO  Tadashi SUMI  

     
    PAPER

      Vol:
    E81-C No:5
      Page(s):
    680-694

    This paper describes a chip set architecture and its implementation for programmable MPEG2 MP@ML (main profile at main level) video encoder. The chip set features a functional partitioning architecture based on the MPEG2 layer structure. Using this partitioning scheme, an optimized system configuration with double bus structure is proposed. In addition, a hybrid architecture with dual video-oriented on-chip RISC processors and dedicated hardware and a hierarchical pipeline scheme covering all layers are newly introduced to realize flexibility. Also, effective motion estimation is achieved by a scalable solution for high picture quality. Adopting these features, three kinds of VLSI have been developed using 0. 5 micron double metal CMOS technology. The chip set consists of a controller-LSI (C-LSI), a macroblock level pixel processor-LSI (P-LSI) and a motion estimation-LSI (ME-LSI). The chip set combined with synchronous DRAMs (SDRAM) supports all the layer processing including rate-control and realizes real-time encoding for ITU-R-601 resolution video (720480 pixels at 30 frames/s) with glue less logic. The exhaustive motion estimation capability is scalable up to 63. 5 and 15. 5 in the horizontal and vertical directions respectively. This chip set solution realizes a low cost MPEG2 video encoder system with excellent video quality on a single PC extension board. The evaluation system and application development environment is also introduced.

  • A Single-Chip MPEG-2 422P@ML Video, Audio, and System Encoder with a 162 MHz Media-Processor Core and Dual Motion Estimation Cores

    Tetsuya MATSUMURA  Satoshi KUMAKI  Hiroshi SEGAWA  Kazuya ISHIHARA  Atsuo HANAMI  Yoshinori MATSUURA  Stefan SCOTZNIOVSKY  Hidehiro TAKATA  Akira YAMADA  Shu MURAYAMA  Tetsuro WADA  Hideo OHIRA  Toshiaki SHIMADA  Ken-ichi ASANO  Toyohiko YOSHIDA  Masahiko YOSHIMOTO  Koji TSUCHIHASHI  Yasutaka HORIBA  

     
    PAPER-Integrated Electronics

      Vol:
    E84-C No:1
      Page(s):
    108-122

    A single-chip MPEG-2 video, audio, and system encoder LSI has been developed. It performs concurrent real-time processing of MPEG-2 422P@ML video encoding, 2-channel Dolby Digital or MPEG-1 audio encoding, and system encoding that generates a multiplexed transport stream (TS) or a program stream (PS). Advanced hybrid architecture, which combines a high performance VLIW media-processor D30V and hardwired video processing circuits, has been adopted to satisfy the demands of both high flexibility and enormous computational capability. A unified control scheme has been newly proposed that hierarchically manages adaptive task priority control over asynchronous video, audio, and system encoding processes in order to achieve real-time concurrent processing using a single D30V. Dual dedicated motion estimation cores consisting of a coarse ME core (CME) for wide range searches and a fine ME core (FME) for precise searches have been integrated to produce high picture quality while using a small amount of hardware. Adopting these features, a single-chip encoder has been fabricated using 0.25-micron 4-layer metal CMOS technology, and integrated into a 14.2 mm 14.2 mm die with 11 million transistors.

  • An Architectural Study of an MPEG-2 422P@HL Encoder Chip Set

    Ayako HARADA  Shin-ichi HATTORI  Tadashi KASEZAWA  Hidenori SATO  Tetsuya MATSUMURA  Satoshi KUMAKI  Kazuya ISHIHARA  Hiroshi SEGAWA  Atsuo HANAMI  Yoshinori MATSUURA  Ken-ichi ASANO  Toyohiko YOSHIDA  Masahiko YOSHIMOTO  Tokumichi MURAKAMI  

     
    PAPER-Implementations of Signal Processing Systems

      Vol:
    E83-A No:8
      Page(s):
    1614-1623

    An MPEG-2 422P@HL encoder chip set composed of a preprocessing LSI, an encoding LSI, and a motion estimation LSI is described. This chip set realizes a two-type scalability of picture resolution and quality, and executes a hierarchical coding control in the overall encoder system. Due to its scalable architecture, the chip set realizes a 422P@HL video encoder with multi-chip configuration. This single encoding LSI achieves 422P@ML video, audio, and system encoding in real time. It employs an advanced hybrid architecture with a 162 MHz media processor and dedicated video processing hardware. It also has dual communication ports for parallel processing with multi-chip configuration. Transferring of reconstructed data and macroblock characteristic data between neighboring encoder modules is executed via these ports. The preprocessing LSI is fabricated using 0.25 micron three-layer metal CMOS technology and integrates 560 K gates in an area of 12.0 mm 12.0 mm . The encoding LSI is fabricated using 0.25 micron four-layer metal CMOS technology and integrates 11 million transistors in an area of 14.2 mm 14.2 mm . The motion estimation LSI is fabricated using 0.35 micron three-layer metal CMOS technology. It integrates 1.9 million transistors in an area of 8.5 mm 8.5 mm . This chip set makes various system configurations possible and allows for a compact and cost-effective video encoder with high picture quality.