The search functionality is under construction.

Author Search Result

[Author] Kazuya TADA(14hit)

1-14hit
  • Thermal Annealing Effect on Optical Absorption Spectra of Poly(3-hexylthiophene):Unmodified-C60 Composites

    Kazuya TADA  

     
    BRIEF PAPER

      Vol:
    E98-C No:2
      Page(s):
    120-122

    The combination of a halogen-free solvent 1,2,4-trimethylbenzene and unmodified fullerene potentially provides a way to develop environmentally-friendly and cost-effective solution-processed organic photocells. In this paper, the thermal annealing effect on the optical absorption spectra in poly(3-hexylthiophene):unmodified-C$_{60}$ composites with various compositions is reported. It is found that the onset temperature of the absorption spectrum change is higher in the composites with higher fullerene content. It is speculated that strong interaction between the polymer main chain and C$_{60}$ tends to suppress the reorientation of polymer main chains in a composite with high C$_{60}$ content.

  • Temporal Change in Electric Potential Distribution and Film Thickness in Electrophoretic Deposition of Conjugated Polymer

    Kazuya TADA  

     
    BRIEF PAPER

      Vol:
    E96-C No:3
      Page(s):
    378-380

    It has been reported that the temporal change of current during the deposition shows a plateau and a break, similar to those found in a photocurrent profile taken by the time-of-flight technique for the investigation of photocarrier dynamics in condensed matters, enabling the estimation of electrophoretic mobility of colloidal particles in the suspension. The estimation of the electrophoretic mobility from transient current during the deposition by the simple drift model is based on the assumption that a constant electric field is uniformly applied between the positive and negative electrodes. Therefore, it is important to check if this assumption is satisfied. It is also important to measure the temporal evolution of film thickness, because this may give information about uniformity of colloidal size in the suspension. This study addresses these topics and validity of the assumption is confirmed.

  • In-situ Measurement of Photoelectron Spectroscopy in Air of Polypyrrole during Electrochemical Undoping

    Kazuya TADA  Yoshinori MIYOSHI  Mitsuyoshi ONODA  

     
    LETTER-Materials & Devices

      Vol:
    E91-C No:12
      Page(s):
    1885-1886

    In-situ measurement of photoelectron spectra of polypyrrole during electrochemical undoping/doping cycles has been carried out by using an open-type electrochemical cell. It has been observed that the ionization potential decreases with decreased electrochemical potential. This result seems to be reasonable because the decreased electrochemical potential corresponds to the undoping or recovery of electrons into vacant state of valence band.

  • Photoinduced Charge Transfer of Conducting Polymer Composites

    Mitsuyoshi ONODA  Kazuya TADA  Katsumi YOSHINO  

     
    PAPER

      Vol:
    E81-C No:7
      Page(s):
    1051-1056

    Unique characteristics such as quenching of photoluminescence and improvement of photovoltaic effect were observed in acceptor polymer, (cyano-substituted poly (p-phenylene vinylene)), CN-PPV/donor polymer (poly(3-hexylthiophene), P3HT composites. By taking account of the difference in electronic energy states of both CN-PPV and P3HT, these characteristics are interpreted in terms of photoinduced charge transfer between CN-PPV and P3HT and formation of fractal network.

  • Estimation of Material Efficiency in Electrophoretic Deposition of Conjugated Polymer from Optical Absorption of Residual Suspension

    Kazuya TADA  Mitsuyoshi ONODA  

     
    BRIEF PAPER

      Vol:
    E94-C No:2
      Page(s):
    193-195

    The nanoporosity installed in conjugated polymer films prepared by electrophoretic deposition makes it difficult to measure the amount of polymer deposited on a substrate. Here, an alternative approach, the estimation of material efficiency of the electrophoretic deposition from the optical absorption spectra of the residual suspensions has been studied. The ultimate recovery rate, which becomes smaller in suspensions with lower acetonitrile content, does not depend on the deposition voltage. The light scattering by the colloidal particles seems to be absent in residual suspensions after a deposition long enough to reach the ultimate recovery rate, indicating the exhaustion of the colloidal particles. Although the deposition rate of the polymer markedly lowers upon coating of the deposition electrode with PEDOT, the ultimate recovery rate remains unchanged. These results suggest that the material efficiency in this deposition method is limited by the generation rate of the colloidal particles in the suspension.

  • S-Shaped Nonlinearity in Electrical Resistance of Electroactive Supercoiled Polymer Artificial Muscle Open Access

    Kazuya TADA  Masaki KAKU  

     
    BRIEF PAPER-Organic Molecular Electronics

      Pubricized:
    2019/08/05
      Vol:
    E103-C No:2
      Page(s):
    59-61

    S-shaped nonlinearity is found in the electrical resistance-length relationship in an electroactive supercoiled polymer artificial muscle. The modulation of the electrical resistance is mainly caused by the change in the contact condition of coils in the artificial muscle upon deformation. A mathematical model based on logistic function fairly reproduces the experimental data of electrical resistance-length relationship.

  • Effect of Temperature on Electrical Resistance-Length Characteristic of Electroactive Supercoiled Polymer Artificial Muscle Open Access

    Kazuya TADA  Takashi YOSHIDA  

     
    BRIEF PAPER

      Pubricized:
    2020/10/06
      Vol:
    E104-C No:6
      Page(s):
    192-193

    It is found that the electrical resistance-length characteristic in an electroactive supercoiled polymer artificial muscle strongly depends on the temperature. This may come from the thermal expansion of coils in the artificial muscle, which increases the contact area of neighboring coils and results in a lower electrical resistance at a higher temperature. On the other hand, the electrical resistance-length characteristic collected during electrical driving seriously deviates from those collected at constant temperatures. Inhomogeneous heating during electrical driving seems to be a key for the deviation.

  • A Combinatorial Approach to Investigation of Schottky Diodes Based on Electrochemically Polymerized Conjugated Polymer

    Kazuya TADA  Takaya UEYAMADA  Mitsuyoshi ONODA  

     
    PAPER-Electrochemical of Organic Materials

      Vol:
    E87-C No:12
      Page(s):
    2071-2075

    In this paper, we have proposed to apply a combinatorial approach to investigate the Schottky diode based on electrochemically polymerized conjugated polymer. The concept of combinatorial approach was emerged in the biochemical field and lately used in the materials science to screen a number of experimental conditions efficiently. Some tips for designing the polymerization bath suitable for our purpose, such as the way to suppress the interference of polymerization currents, have been described. In the case of Schottky diodes based on poly (3-methylthiophene), the system chosen to test our idea, the effects of polymer thickness and the supporting salt on the device characteristics have been surveyed clearly and rapidly. The map or library of the relationship between the polymerization condition and device characteristic may be useful to tune the device characteristics as desired. Our preliminary result has shown that the combinatorial approach proposed here can be a powerful tool to investigate the conjugated polymer devices by electrochemical polymerization such as electrochromic devices.

  • Heat Treatment Effect on Polymer Light-Emitting Device Based on Poly(9,9-dioctylfluorene) during Maskless Dye-Diffusion Technique

    Kazuya TADA  Mitsuyoshi ONODA  

     
    LETTER-Organic Molecular Devices

      Vol:
    E89-C No:12
      Page(s):
    1775-1776

    It has been shown that the maskless dye-diffusion technique is applicable to a conjugated polymer poly(9,9-dioctylfluorene). The introduction of Coumarin 6 and Nile red results in green and white emission, with the increased onset voltage for the both cases. It has also been confirmed that the heat treatment effect during the maskless dye diffusion technique results in not the increase but the decrease of the onset voltage, indicating that the dye plays a role of carrier trap in the polymer.

  • Photoirradiation Effects on Light-Emitting Devices Based on Poly (p-phenylene vinylene) Derivative

    Kazuya TADA  Mitsuyoshi ONODA  

     
    PAPER-Electronic Devices

      Vol:
    E85-C No:6
      Page(s):
    1227-1232

    Photoirradiation effects on the polymer light-emitting devices (PLEDs) with a semitransparent-Al cathode have been studied. A light-emitting polymers, a poly (p-phenylene vinylene) derivative MDOPPV has been used in this study. Upon photoirradiation, the emission intensity at a constant voltage was rapidly decreased. However, the quantum efficiency of electroluminescence remained constant, indicating the spatial separation between recombination zone and photooxidized defects. On the other hand, the quantum efficiency of photoluminescence rapidly dropped upon similar photoirradation. These can be understood by taking the difference in the spatial distribution and the origin of excitons between electro- and photo-luminescence processes. It was also found that the photooxidation rate of the polymer film whose thickness is ca. 100 nm does not have thickness dependence, suggesting that the photooxidation of the polymer proceeds uniformly throughout the device.

  • Optically Patternable Light-Emitting Devices Based on Conducting Polymers

    Kazuya TADA  Mitsuyoshi ONODA  

     
    PAPER-Electro Luminescence

      Vol:
    E83-C No:7
      Page(s):
    1017-1021

    Optically patternable light-emitting devices based on conducting polymers were fabricated and were characterized. The cathode of the devices is made with a semitransparent-Al film, which enables to photoinduced degradation of the polymers in air. The optically patternable devices were successfully made with poly (2-methoxy-5-dodecyloxy-p-phenylene vinylene) (MDOPPV), as well as with poly (3-dodecylthiophene) (PAT12). However, optical absorption study indicated that the patterning mechanism of the MDOPPV device is considerably different from that of the PAT12 device.

  • Doping Effects on the Series Resistance of Conducting Polymers Diode

    Masayuki WADA  Kazuya TADA  Mitsuyoshi ONODA  

     
    PAPER-Nano-interfacial Properties

      Vol:
    E87-C No:2
      Page(s):
    152-157

    A device structure for polymer Schottky diode, which has the glass chimney as a dopant reservoir enabling the reduction of series resistance without cathode corrosion, has been proposed. Doping with the acetonitrile solution of FeCl3 in the device resulted in the increase in the forward-bias current by one order of magnitude without notable increase in reverse-bias current, suggesting that the doping reduced the series resistance. It is found that the penetration speed depends on the solvents. Short time doping with the nitromethane solution of FeCl3 resulted in the increase by three orders of magnitude. However, doping for a long period yielded the considerable increase in the reverse-bias current due to the complete penetration of dopatn solution. When the upper opening of glass chimney of device is left opened and the sample after doping stored in air, the forward-bias current of the device reduced rapidly due to the undoping and/or degradation of polymer. It is possible to protect the degradation of device characteristics after doping, by sealing the chimney and storing the device in vacuum.

  • Toward Long and Strong Electroactive Supercoiled Polymer Artificial Muscles: Fabrication with Constant-Load Springs

    Kazuya TADA  

     
    BRIEF PAPER

      Pubricized:
    2022/12/14
      Vol:
    E106-C No:6
      Page(s):
    232-235

    An electroactive supercoiled polymer artificial muscle, which is made from a conductive sewing thread using self-coiling caused by inserting a twist with a hanged appropriate weight, is 1/4-1/3 of the thread in length. Therefore, it is necessary to move the weight vertically about two or three times as long as the desired electroactive supercoiled polymer artificial muscle, resulting in a large vertical dimension of the fabrication equipment. This study has attempted to solve this problem by using constant-load springs that enable horizontal table-top fabrication equipment. It has been also demonstrated that inserting a twist into the bundled threads results in a strong electroactive supercoiled polymer artificial muscle.

  • Anisotropic Bending Machine Using Conducting Polypyrrole

    Mitsuyoshi ONODA  Kazuya TADA  

     
    PAPER-Nano-interface Controlled Electronic Devices

      Vol:
    E87-C No:2
      Page(s):
    128-135

    Recent new technologies of electro-mechanical conversion devices have been reviewed. Especially, the electrochemical properties of anisotropic actuators using polypyrrole have been reviewed in detailed and the realization of the bimorph (or bending beam) structure without artificial adhesive agent is introduced.