The search functionality is under construction.

Author Search Result

[Author] Takashi YOSHIDA(7hit)

1-7hit
  • A Voice Message Store and Forward System Based on the DSP Technique

    Jun HIRAI  Takashi YOSHIDA  Hisazumi TSUCHIDA  Minoru OHYAMA  Makoto SASAOKA  

     
    PAPER-Switching and Communication Processing

      Vol:
    E71-E No:9
      Page(s):
    876-881

    A large scale voice store forward system has been developed for NTT's ISDN, the Information Network System (INS). This system, which is based on digital signal processing (DSP), offers message delivery, message board and information proffer services, and it has user-friendly advanced features. Single chip DSP LSI are utilized for voice code conversion with pause-in-speech detection and DTMF reception, and a new backward-hangover processing technique has been introduced for pause-in-speech deletion. The field trial showed that the system performed as designed, that the user-friendly features truely helped the user to use it easily, and that the amount of storage used was reduced to 35% by adopting adaptive differential PCM coding and pause-in-speech deletion without voice quality degradation. The system was improved to meet network requirements, and commercial service was started in November 1986.

  • Effect of Temperature on Electrical Resistance-Length Characteristic of Electroactive Supercoiled Polymer Artificial Muscle Open Access

    Kazuya TADA  Takashi YOSHIDA  

     
    BRIEF PAPER

      Pubricized:
    2020/10/06
      Vol:
    E104-C No:6
      Page(s):
    192-193

    It is found that the electrical resistance-length characteristic in an electroactive supercoiled polymer artificial muscle strongly depends on the temperature. This may come from the thermal expansion of coils in the artificial muscle, which increases the contact area of neighboring coils and results in a lower electrical resistance at a higher temperature. On the other hand, the electrical resistance-length characteristic collected during electrical driving seriously deviates from those collected at constant temperatures. Inhomogeneous heating during electrical driving seems to be a key for the deviation.

  • Design Method for Low-Delay Maximally Flat FIR Digital Differentiators with Variable Stopbands Obtained by Minimizing Lp Norm

    Ryosuke KUNII  Takashi YOSHIDA  Naoyuki AIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:7
      Page(s):
    1513-1521

    Linear phase maximally flat digital differentiators (DDs) with stopbands obtained by minimizing the Lp norm are filters with important practical applications, as they can differentiate input signals without distortion. Stopbands designed by minimizing the Lp norm can be used to control the relationship between the steepness in the transition band and the ripple scale. However, linear phase DDs are unsuitable for real-time processing because each group delay is half of the filter order. In this paper, we proposed a design method for a low-delay maximally flat low-pass/band-pass FIR DDs with stopbands obtained by minimizing the Lp norm. The proposed DDs have low-delay characteristics that approximate the linear phase characteristics only in the passband. The proposed transfer function is composed of two functions, one with flat characteristics in the passband and one that ensures the transfer function has Lp approximated characteristics in the stopband. In the optimization of the latter function, Newton's method is employed.

  • A Closed-Form Design of Linear Phase FIR Band-Pass Maximally Flat Digital Differentiators with an Arbitrary Center Frequency

    Takashi YOSHIDA  Yosuke SUGIURA  Naoyuki AIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:12
      Page(s):
    2611-2617

    Maximally flat digital differentiators (MFDDs) are widely used in many applications. By using MFDDs, we obtain the derivative of an input signal with high accuracy around their center frequency of flat property. Moreover, to avoid the influence of noise, it is desirable to attenuate the magnitude property of MFDDs expect for the vicinity of the center frequency. In this paper, we introduce a design method of linear phase FIR band-pass MFDDs with an arbitrary center frequency. The proposed transfer function for both of TYPE III and TYPE IV can be achieved as a closed form function using Jacobi polynomial. Furthermore, we can easily derive the weighting coefficients of the proposed MFDDs using recursive formula. Through some design examples, we confirm that the proposed method can adjust the center frequency arbitrarily and the band width having flat property.

  • High-Performance 76-GHz Planar Gunn VCO

    Yoshimichi FUKASAWA  Kiyoshi KAWAGUCHI  Takashi YOSHIDA  Takahiro SUGIYAMA  Atsushi NAKAGAWA  

     
    PAPER-GaAs- and InP-Based Devices

      Vol:
    E91-C No:7
      Page(s):
    1098-1103

    A 76-GHz Gunn voltage-controlled oscillator (VCO) with a high output power and a wide tuning-frequency range was fabricated by optimizing VCO circuits and using laser micromachining. The tuning-frequency range of the fabricated Gunn VCO was more than two times higher than that attained in our previous experiments by optimizing VCO circuits. The VCO attained a tuning-frequency range of 493 MHz, output power variation of 1.0 dB, and tuning-frequency linearity of 6.1% over a tuning-voltage range from 0 to 10 V. Its power consumption was 2.0 W at operation voltage of 3.6 V. And it measured output power was 13.3 dBm with DC-RF conversion efficiency of 1.0% at 76.5 GHz. Moreover, under fundamental-mode operation, it achieved low phase noise of -107.8 dBc/Hz at an offset frequency of 1 MHz. Since laser micromachining was used in fabricating the Gunn VCO, the reproducibility of its RF performance was improved.

  • A Closed-Form of 2-D Maximally Flat Diamond-Shaped Half-Band FIR Digital Filters with Arbitrary Difference of the Filter Orders Open Access

    Taiki SHINOHARA  Takashi YOSHIDA  Naoyuki AIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:3
      Page(s):
    518-523

    Two-dimensional (2-D) maximally flat finite impulse response (FIR) digital filters have flat characteristics in both passband and stopband. 2-D maximally flat diamond-shaped half-band FIR digital filter can be designed very efficiently as a special case of 2-D half-band FIR filters. In some cases, this filter would require the reduction of the filter lengths for one of the axes while keeping the other axis unchanged. However, the conventional methods can realize such filters only if difference between each order is 2, 4 and 6. In this paper, we propose a closed-form frequency response of 2-D low-pass maximally flat diamond-shaped half-band FIR digital filters with arbitrary filter orders. The constraints to treat arbitrary filter orders are firstly proposed. Then, a closed-form transfer function is achieved by using Bernstein polynomial.

  • Improved Liquid-Phase Detection of Biological Targets Based on Magnetic Markers and High-Critical-Temperature Superconducting Quantum Interference Device Open Access

    Masakazu URA  Kohei NOGUCHI  Yuta UEOKA  Kota NAKAMURA  Teruyoshi SASAYAMA  Takashi YOSHIDA  Keiji ENPUKU  

     
    INVITED PAPER

      Vol:
    E99-C No:6
      Page(s):
    669-675

    In this paper, we propose improved methods of liquid-phase detection of biological targets utilizing magnetic markers and a high-critical-temperature superconducting quantum interference device (SQUID). For liquid-phase detection, the bound and unbound (free) markers are magnetically distinguished by using Brownian relaxation of free markers. Although a signal from the free markers is zero in an ideal case, it exists in a real sample on account of the aggregation and precipitation of free markers. This signal is called a blank signal, and it degrades the sensitivity of target detection. To solve this problem, we propose improved detection methods. First, we introduce a reaction field, Bre, during the binding reaction between the markers and targets. We additionally introduce a dispersion process after magnetization of the bound markers. Using these methods, we can obtain a strong signal from the bound markers without increasing the aggregation of the free markers. Next, we introduce a field-reversal method in the measurement procedure to differentiate the signal from the markers in suspension from that of the precipitated markers. Using this procedure, we can eliminate the signal from the precipitated markers. Then, we detect biotin molecules by using these methods. In an experiment, the biotins were immobilized on the surfaces of large polymer beads with diameters of 3.3 µm. They were detected with streptavidin-conjugated magnetic markers. The minimum detectable molecular number concentration was 1.8×10-19 mol/ml, which indicates the high sensitivity of the proposed method.