The search functionality is under construction.

Author Search Result

[Author] Kei INAGE(2hit)

1-2hit
  • Measurement-Based Spectrum Database for Flexible Spectrum Management

    Koya SATO  Masayuki KITAMURA  Kei INAGE  Takeo FUJII  

     
    PAPER

      Vol:
    E98-B No:10
      Page(s):
    2004-2013

    In this paper, we propose the novel concept of a spectrum database for improving the efficiency of spectrum utilization. In the current design of TV white space spectrum databases, a propagation model is utilized to determine the spectrum availability. However, this propagation model has poor accuracy for radio environment estimation because it requires a large interference margin for the PU coverage area to ensure protection of primary users (PUs); thus, it decreases the spectrum sharing efficiency. The proposed spectrum database consists of radio environment measurement results from sensors on mobile terminals such as vehicles and smart phones. In the proposed database, actual measurements of radio signals are used to estimate radio information regarding PUs. Because the sensors on mobile terminals can gather a large amount of data, accurate propagation information can be obtained, including information regarding propagation loss and shadowing. In this paper, we first introduce the architecture of the proposed spectrum database. Then, we present experimental results for the database construction using actual TV broadcast signals. Additionally, from the evaluation results, we discuss the extent to which the proposed database can mitigate the excess interference margin.

  • Clustering for Signal Power Distribution Toward Low Storage Crowdsourced Spectrum Database

    Yoji UESUGI  Keita KATAGIRI  Koya SATO  Kei INAGE  Takeo FUJII  

     
    PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-B No:10
      Page(s):
    1237-1248

    This paper proposes a measurement-based spectrum database (MSD) with clustered fading distributions toward greater storage efficiencies. The conventional MSD can accurately model the actual characteristics of multipath fading by plotting the histogram of instantaneous measurement data for each space-separated mesh and utilizing it in communication designs. However, if the database contains all of a distribution for each location, the amount of data stored will be extremely large. Because the main purpose of the MSD is to improve spectral efficiency, it is necessary to reduce the amount of data stored while maintaining quality. The proposed method reduces the amount of stored data by estimating the distribution of the instantaneous received signal power at each point and integrating similar distributions through clustering. Numerical results show that clustering techniques can reduce the amount of data while maintaining the accuracy of the MSD. We then apply the proposed method to the outage probability prediction for the instantaneous received signal power. It is revealed that the prediction accuracy is maintained even when the amount of data is reduced.