The search functionality is under construction.

Author Search Result

[Author] Keita KATAGIRI(2hit)

1-2hit
  • Low Storage, but Highly Accurate Measurement-Based Spectrum Database via Mesh Clustering

    Rei HASEGAWA  Keita KATAGIRI  Koya SATO  Takeo FUJII  

     
    PAPER

      Pubricized:
    2018/04/13
      Vol:
    E101-B No:10
      Page(s):
    2152-2161

    Spectrum databases are required to assist the process of radio propagation estimation for spectrum sharing. Especially, a measurement-based spectrum database achieves highly efficient spectrum sharing by storing the observed radio environment information such as the signal power transmitted from a primary user. However, when the average received signal power is calculated in a given square mesh, the bias of the observation locations within the mesh strongly degrades the accuracy of the statistics because of the influence of terrain and buildings. This paper proposes a method for determining the statistics by using mesh clustering. The proposed method clusters the feature vectors of the measured data by using the k-means and Gaussian mixture model methods. Simulation results show that the proposed method can decrease the error between the measured value and the statistically processed value even if only a small amount of data is available in the spectrum database.

  • Clustering for Signal Power Distribution Toward Low Storage Crowdsourced Spectrum Database

    Yoji UESUGI  Keita KATAGIRI  Koya SATO  Kei INAGE  Takeo FUJII  

     
    PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-B No:10
      Page(s):
    1237-1248

    This paper proposes a measurement-based spectrum database (MSD) with clustered fading distributions toward greater storage efficiencies. The conventional MSD can accurately model the actual characteristics of multipath fading by plotting the histogram of instantaneous measurement data for each space-separated mesh and utilizing it in communication designs. However, if the database contains all of a distribution for each location, the amount of data stored will be extremely large. Because the main purpose of the MSD is to improve spectral efficiency, it is necessary to reduce the amount of data stored while maintaining quality. The proposed method reduces the amount of stored data by estimating the distribution of the instantaneous received signal power at each point and integrating similar distributions through clustering. Numerical results show that clustering techniques can reduce the amount of data while maintaining the accuracy of the MSD. We then apply the proposed method to the outage probability prediction for the instantaneous received signal power. It is revealed that the prediction accuracy is maintained even when the amount of data is reduced.