The search functionality is under construction.

Author Search Result

[Author] Keita KAWANO(9hit)

1-9hit
  • A Study on Estimation of Mobility of Terminals for Hierarchical Mobility Management Scheme

    Keita KAWANO  Kazuhiko KINOSHITA  Koso MURAKAMI  

     
    PAPER-Mobility Management

      Vol:
    E87-B No:9
      Page(s):
    2557-2566

    Hierarchical Mobile IPv6 (HMIPv6) has been proposed to manage the mobility of Mobile Terminals (MTs) hierarchically to reduce packet losses during local handover. HMIPv6 uses a mobility manageable router in a domain visited by the MTs to manage the micromobility of the MTs. The router is called Mobility Anchor Point (MAP). As a hierarchical mobility management scheme based on HMIPv6, we have already proposed a multilevel hierarchical distributed IP mobility management scheme to manage the mobility of MTs in a decentralized manner using multiple MAPs. Our scheme manages the mobility of an MT using a MAP having a suitable management domain. This usage of MAPs aims to efficiently decentralize the load of mobility management. Our scheme estimates the movement speed of the MT and then estimates the mobility of the MT based on the estimated movement speed of the MT to achieve the objective. However, recent simulation results obtained with more realistic mobility model indicate that our scheme has two problems in estimating the mobility of MTs: One is that our current scheme misestimates the movement speed of an MT in some cases, and the other is that our current scheme does not notice the changes in the mobility of an MT when the MT decelerates and stays in the same access area for a long time. Thus, an enhanced mobility estimation method is proposed in this paper. The enhanced method has an ability to estimate the movement speed of MTs more correctly and an ability to urge decelerated MTs to degrade their MAP quickly. Finally, the performance of the proposed mobility estimation method is evaluated using simulation experiments. The simulation results show that the enhanced method allows our scheme to estimate the mobility of MTs more correctly and so achieve more efficient load sharing.

  • Public WLAN Virtualization for Multiple Services

    Kazuhiko KINOSHITA  Kazuki GINNAN  Keita KAWANO  Hiroki NAKAYAMA  Tsunemasa HAYASHI  Takashi WATANABE  

     
    PAPER-Network

      Pubricized:
    2018/10/10
      Vol:
    E102-B No:4
      Page(s):
    832-844

    The recent widespread use of high-performance terminals has resulted in a rapid increase in mobile data traffic. Therefore, public wireless local area networks (WLANs) are being used often to supplement the cellular networks. Capacity improvement through the dense deployment of access points (APs) is being considered. However, the effective throughput degrades significantly when many users connect to a single AP. In this paper, users are classified into guaranteed bit rate (GBR) users and best effort (BE) users, and we propose a network model to provide those services. In the proposed model, physical APs and the bandwidths are assigned to each service class dynamically using a virtual AP configuration and a virtualized backhaul network, for reducing the call-blocking probability of GBR users and improving the satisfaction degree of BE users. Finally, we evaluate the performance of the proposed model through simulation experiments and discuss its feasibility.

  • Multilevel Hierarchical Mobility Management in Densely Meshed Networks

    Keita KAWANO  Kazuhiko KINOSHITA  Koso MURAKAMI  

     
    PAPER-Network

      Vol:
    E89-B No:7
      Page(s):
    2002-2011

    Micromobility management is a key issue for the deployment of broadband mobile communication services. The packet loss during handover and the handover latency need to be minimized to maintain the high quality of these services. We have previously proposed a mobility management scheme that addresses this issue in wide-area mobile networks that employed hierarchical multiple mobility management routers (Mobility Anchor Points or MAPs). Our scheme directs a Mobile Terminal (MT) to a suitable MAP to fully minimize packet loss during handover, and handover latency of the MTs. In our previous work, we confirmed the effectiveness of our scheme using a simple tree network. Actual networks however, always have densely meshed topologies to provide some redundancy for the elimination of single points of failure. In such networks, it is difficult to deduce the relationships between the MAPs, and this makes it difficult for our scheme to select a suitable MAP for an MT, because the selection is performed using both the MT's smoothed speed and the relationships existing between the MAPs located above the Access Router (AR), to which the MT is connected. In this paper, we propose a method to overcome this problem, by autonomously adjusting the selection criteria that are individually configured for use at a particular AR, and we evaluate this method using simulation experiments. The results show that our mobility management scheme works well in densely meshed networks using the proposed additional method.

  • Network Map Architecture Using Inter-Agent Communication Techniques for Multiple QoS Routing

    Kazuhiko KINOSHITA  Tomokazu MASUDA  Keita KAWANO  Hideaki TANIOKA  Tetsuya TAKINE  Koso MURAKAMI  

     
    PAPER-Network

      Vol:
    E85-B No:7
      Page(s):
    1333-1341

    To diffuse multimedia information services, communication networks must guarantee the quality of services (QoSs) requested by users. In addition, users should be allowed to observe the network in order to customize their own services. A new network management architecture is therefore essential. It must perceive not only node connectivity, but also network failure points and the traffic situation dynamically. This paper introduces the network map as such an architecture on personalized multimedia communication networks and proposes multiple QoS routing using the network map. Moreover, a prototype system is built in order to verify the availability of the network map.

  • A Design for Integrated Wireless Network with Flexible Bandwidth Assignment

    Takanori NOMURA  Keita KAWANO  Kazuhiko KINOSHITA  Koso MURAKAMI  

     
    PAPER-Mobility Management

      Vol:
    E87-B No:5
      Page(s):
    1177-1183

    As various mobile communication systems have developed, dramatically integrated wireless network, where users can communicate seamlessly via several wireless access systems, have become expected. At present, there are many studies of integrated wireless network, but no study of a network design method. Therefore, in this paper, we discuss a network design method for integrated wireless networks. Because of the handover procedure, the network design where adjacent base stations are connected to the same router, regardless of radio system type, is simply considered. However, in such a design, where mobile users crowd into a particular area and users' access to the base stations located there increases, the load of these accesses is centralized to the single router. To overcome this problem, we propose a new network design wherein the base stations of heterogeneous wireless communication systems, the service areas of which overlap, are connected to a different router. In the proposed network design, although users' accesses are concentrated on the base stations located in a particular area, users in that area can be assigned bandwidth of several upper links according to the access conditions of the base stations in neighboring areas. Finally, we show the excellent performance of the proposed design by simulation experiments.

  • A Dynamic Spectrum Assignment Method for Call Blocking Probability Reduction in WiFi/WiMAX Integrated Networks

    Kazuhiko KINOSHITA  Yuichi KANAMORI  Keita KAWANO  Koso MURAKAMI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:12
      Page(s):
    3498-3504

    With advances in communication technologies, network services provided via the Internet have become widely diversified, and people can use these services not only via wired networks but also via wireless networks. There are several wireless systems in practical use such as cellular, WiMAX and WiFi. Although these wireless network systems have developed independently of each other, they should be integrated for seamless access by users. However, each system uses an individual spectrum prescribed by law to avoid radio interference. To overcome such a situation, dynamic spectrum access technology is receiving much attention. We propose a dynamic spectrum assignment method in which a WiFi system temporarily uses a spectrum band of the WiMAX system in WiFi/WiMAX integrated networks to reduce call blocking probability of multimedia communication services. We confirm the effectiveness of the proposed method by simulation experiments.

  • A Distributed Network Mobility Management Scheme for Hierarchical Mobile IPv6 Networks

    Keita KAWANO  Kazuhiko KINOSHITA  Nariyoshi YAMAI  

     
    PAPER-Network

      Vol:
    E91-B No:7
      Page(s):
    2272-2278

    Route optimization for network mobility is a key technique for providing a node in a mobile network (Mobile Network Node or MNN) with high quality broadband communications. Many schemes adding route optimization function to Network Mobility (NEMO) Basic Support protocol, the standardized network mobility management protocol from the IETF nemo working group, have already been proposed in recent years. One such scheme, a scheme using Hierarchical Mobile IPv6 (HMIPv6) aims to overcome micromobility management issues as well by applying a mechanism based on HMIPv6. The traditional scheme, however, suffers from a significant number of signaling messages as the number of MNNs and/or the number of their Correspondent Nodes (CNs) increase, because many messages notifying the MNNs' Home Agents (HAMNNs) and the CNs of the mobile network's movement are generated simultaneously each time the mobile network moves to the domain of another micromobility management router (Mobility Anchor Point or MAP). This paper proposes a scheme to overcome this problem. Our scheme reduces the number of signaling messages generated at the same time by managing the mobility of MNNs using multiple MAPs distributed within a network for load sharing. The results of simulation experiments show that our scheme works efficiently compared to the traditional scheme when a mobile network has many MNNs and/or these MNNs communicate with many CNs.

  • A Mobility-Based Terminal Management in IPv6 Networks

    Keita KAWANO  Kazuhiko KINOSHITA  Koso MURAKAMI  

     
    PAPER

      Vol:
    E85-B No:10
      Page(s):
    2090-2099

    Hierarchical Mobile IPv6 (HMIPv6) has been proposed to accommodate frequent mobility of terminals within the Internet. It utilizes a router, named Mobility Anchor Point (MAP), so that networks can manage mobile terminals without floods of signaling message. Note here that, particularly in a wide area network, such as a mobile communication network, it is efficient to distribute several MAPs within the same network and make the MAP domains cover overlapped areas. This enables the network to manage the terminals in a flexible manner according to their different mobility scenarios. The method described in the Internet-Draft at the IETF, however, lets mobile terminals select its MAP. This may cause load concentration at some particular MAPs and/or floods of signaling messages, because the terminals may not select a feasible MAP in a desirable manner. In this paper, a MAP selection method in distributed-MAPs environment is proposed. It reduces signaling messages to/from outside networks without load concentration at any particular MAPs. Finally, we show that the proposed method works effectively by simulation experiments.

  • A Spectrum Sharing Method Based on Users' Behavior and Providers' Profit

    Kazuhiko KINOSHITA  Yukika MARUYAMA  Keita KAWANO  Takashi WATANABE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/03/10
      Vol:
    E100-B No:10
      Page(s):
    1928-1938

    In recent years, spectrum sharing has received much attention as a technique for more efficient spectrum use. In the case in which all providers are cooperative, spectrum sensing can easily be realized and can improve user throughput (on average). If that is not the case, providers are not cooperative, i.e., spectrum trading, spectrum bands are rented to promote spectrum sharing. To ensure more profit, however, non-cooperative providers must correctly estimate the fluctuation of the number of connected users to be able to determine the offered channel price. In this paper, we propose a spectrum sharing method to achieve both higher throughput and provider profit via appropriate pricing using a disaggregate behavioral model. Finally, we confirm the effectiveness of the proposed method using simulation experiments.